金星大気「温故知新」セミナー

目次

第1回 金星大気スーパーローテーションの力学への序論

第2回 金星大気スーパーローテーションの力学(1)

    講演日:2020年9月23日

    講演者:松田 佳久(東京学芸大学)

    アーカイブ:講演動画 講演スライド

    参考文献:

    • Boyer, C. & H. Camichel (1961): Observations photographiques de la planète Vénus, Annales d’Astrophysique 24, 531-535.
    • Boyer, C. & P. Guerin (1966): Mise en évidence directe, par la photographie, d'une rotation retrograde de Vénus en 4 jours, C. R. Acad. Sci. Paris t. 263, 253-355.
    • Boyer, C. & P. Guerin (1969): Etude de la rotation retrograde, en 4 jours, de la couche extérieure nuageuse de Vénus, Icarus, 11, 338-355.
    • Schubert, G. & J. A. Whitehead (1969): Moving flame experiment with liquid mercury: Possible implications for the Venus atmosphere, Science, 163:3862, 71-72, https://doi.org/10.1126/science.163.3862.71
    • Thompson, R. (1970): Venus's general circulation is a merry-go-round, JAS, 27:8, Page(s): 1107-1116, https://doi.org/10.1175/1520-0469(1970)027<1107:VGCIAM>2.0.CO;2
    • Fels, S. B. & R. S. Lindzen (1974): The interaction of thermally excited gravity waves with mean flows, Geo. Fluid Dyn., 6:2, 149-191, https://doi.org/10.1080/03091927409365793
    • Gierasch, P. J. (1975): Meridional circulation and the maintenance of the Venus atmospheric rotation, JAS, 32:6, 1038-1044, https://doi.org/10.1175/1520-0469(1975)032<1038:MCATMO>2.0.CO;2
    • Matsuda, Y. (1980): Dynamics of the four-day circulation in the Venus atmosphere, JMSJ, 58:6, 443-470, https://doi.org/10.2151/jmsj1965.58.6_443
    • Matsuda, Y. (1982): A further study of dynamics of the four-day circulation in the Venus atmosphere, JMSJ, 60:1, 245-254, https://doi.org/10.2151/jmsj1965.60.1_245
    • 瓜生道也 (1976): 波とそのまわりの平均運動, 天気, 23:1, 3-22, PDF
    • Takagi, M. & Y. Matsuda (1999): Interpretation of Thompson's mechanism for Venus' atmospheric super-rotation and its extension to the spherical geometry, JMSJ, 77:5, 971-983, https://doi.org/10.2151/jmsj1965.77.5_971
    • Takagi, M. & Y. Matsuda (2000): Stability of convection between the day and night sides on the rotating sphere, JMSJ, 78:2, 181-186, https://doi.org/10.2151/jmsj1965.78.2_181
    • Takagi, M. & Y. Matsuda (2006): A study on the stability of a baroclinic flow in cyclostrophic balance on the Ssphere, GRL, 33:14, L14807, 1-5, http://dx.doi.org/10.1029/2006gl026200
    • Takagi, M. & Y. Matsuda (2007): Effects of thermal tides on the Venus atmospheric superrotation, JGR, 112:D9, D09112, 1-8, http://dx.doi.org/10.1029/2006jd007901

第3回 金星大気スーパーローテーションの力学(2)

第4回 金星大気大循環モデリング ーCCSR/NIES AGCMを用いた研究ー 簡略化大気大循環モデルを中心に

第5回 金星大気大循環モデリング ーCCSR/NIES AGCMを用いた研究ー 現実的な金星大気大循環モデルに向けて

    講演日:2020年11月25日

    講演者:山本 勝(九州大学)

    アーカイブ:講演動画 (CPSアカウント保有者限定) 講演スライド (CPSアカウント保有者限定)

    参考文献:

    • Yamamoto, M., K. Ikeda, M. Takahashi, T. Horinouchi (2019): Solar-locked and geographical atmospheric structures inferred from a Venus general circulation model with radiative transfer, Icarus, 321: 232-250, https://doi.org/10.1016/j.icarus.2018.11.015
    • Yamamoto, M. & M. Takahashi (2021): Atmospheric response to high-resolution topographical and radiative forcings in a general circulation model of Venus: time-mean structures of waves and variances, Icarus, 355: 114-154, https://doi.org/10.1016/j.icarus.2020.114154
    • Eymet, V., R. Fournier, J. L. Dufresne, S. Lebonnois, F. Hourdin, & M. A. Bullock (2009): Net exchange parameterization of thermal infrared radiative transfer in Venus’ atmosphere, JGR-Planets, 114:E11, 11008, https://doi.org/10.1029/2008JE003276
    • Takagi, M., K. Suzuki, H. Sagawa, P. Baron, J. Mendrok, Y. Kasai, & Y. Matsuda (2010): Influence of CO2 line profiles on radiative and radiative-convective equilibrium states of the Venus lower atmosphere, JGR, 115:E6, https://doi.org/10.1029/2009JE003488
    • Lee, C. & M. I. Richardson (2011): A Discrete Ordinate, Multiple Scattering, Radiative Transfer Model of the Venus Atmosphere from 0.1 to 260 µm, JAS, 68:6, 1323-1339, https://doi.org/10.1175/2011JAS3703.1
    • Ikeda, K. (2011): Development of radiative transfer model for Venus atmosphere and simulation of superrotation using a general circulation model, Ph.D thesis, University of Tokyo
    • Mendonça, J. M., P. L. Read, C. F. Wilson, & C. Lee (2015): A new, fast and flexible radiative transfer method for Venus general circulation models, PSS, 105, 80-93, https://doi.org/10.1016/j.pss.2014.11.008
    • Mendonça, J. M. & P. L. Read (2016): Exploring the Venus global super-rotation using a comprehensive general circulation model, PSS, 134, 1-18, https://doi.org/10.1016/j.pss.2016.09.001
    • Lebonnois, S., F. Hourrdin, V. Eymet, & A. Crespin, R. Fournier, F. Forget (2010): Superrotation of Venus' atmosphere analyzed with a full general circulation model, JGR-Planets, 115:E6, https://doi.org/10.1029/2009JE003458
    • Fukabori, M., T. Nakazawa, & M.Tanaka (1986): Absorption properties of infrared active gases at high pressures—I. CO2, Journal of Quantitative Spectroscopy and Radiative Transfer, 36:3, 265-270, https://doi.org/10.1016/0022-4073(86)90074-9
    • Moskalenko, N. I., Y. A. Ilin, S. N. Parzhin, & L. V. Rodionov (1979). Pressure induced IR radiation absorption in atmospheres, Izvestiya Atmos. Oceanic Phys. 15, 632-637
    • Palmer, K. F. & D. Williams (1975): Optical constants of sulfuric acid: application to the clouds of Venus? Appl. Opt., 14:1 208-219, https://doi.org/10.1364/AO.14.000208
    • Pollack, J. B., O. B. Toon, R. C. Whitten, R. Boese, B. Ragent, M. Tomasko, L. Esposito, L. Travis, & D. Wiedman (1980): Distribution and source of the UV absorption in Venus' atmosphere. JGR, 85, 8141-8150, https://doi.org/10.1029/JA085iA13p08141
    • Crisp, D. (1986): Radiative forcing of the Venus mesosphere I. Solar fluxes and heating rates, Icarus 67, 484-514, https://doi.org/10.1016/0019-1035(86)90126-0
    • Hou, A. Y. & B. F. Farrell (1987): Superrotation induced by critical-level absorption of gravity waves on Venus: an assessment, JAS, 44:7, 1049-1061, https://doi.org/10.1175/1520-0469(1987)044%3C1049:SIBCLA%3E2.0.CO;2
    • Schubert, G., C. Covey, A. Del Genio, L. S. Elson, G. Keating, A. Seiff, R. E. Young, J. Apt, C. C. Counselman III, A. J. Kliore, S. S. Limaye, H. E. Revercomb, L. A. Sromovsky, V. E. Suomi, F. Taylor, R. Woo, & U. von Zahn (1980): Structure and circulation of the Venus atmosphere, JGR, 85:A13, 1038-1044, https://doi.org/10.1029/JA085iA13p08007
    • Newman, M. & C. Leovy (1992): Maintenance of strong rotational winds in Venus' middle atmosphere by thermal tides, Science, 257:5070, 647-650, https://doi.org/10.1126/science.257.5070.647
    • Lebonnois, S., N. Sugimoto, & G. Gilli (2016): Wave analysis in the atmosphere of Venus below 100-km altitude, simulated by the LMD Venus GCM, Icarus, 278:1, 38-51, https://doi.org/10.1016/j.icarus.2016.06.004

第6回 金星大気スーパーローテーションの理論

    講演日:2020年12月4日

    講演者:高木 征弘(京都産業大学)

    アーカイブ:講演動画 講演スライド

    参考文献:

    • Gierasch, P. J. (1975): Meridional circulation and the maintenance of the Venus atmospheric rotation, JAS, 32:6, 1038-1044, https://doi.org/10.1175/1520-0469(1975)032<1038:MCATMO>2.0.CO;2
    • Matsuda, Y. (1980): Dynamics of the four-day circulation in the Venus atmosphere, JMSJ, 58:6, 443-470, https://doi.org/10.2151/jmsj1965.58.6_443
    • Matsuda Y. (1982): A further study of dynamics of the four-day circulation in the Venus atmosphere, JMSJ, 60:1, 245-254, https://doi.org/10.2151/jmsj1965.60.1_245
    • Schubert, G. & J. A. Whitehead (1969): Moving Flame Experiment with Liquid Mercury: possible implications for the Venus atmosphere, Science, 163:3862, 71-72, https://doi.org/10.1126/science.163.3862.71
    • Thompson, R. (1970): Venus's general circulation is a merry-go-round, JAS, 27:8, Page(s): 1107-1116, https://doi.org/10.1175/1520-0469(1970)027<1107:VGCIAM>2.0.CO;2
    • Fels, S. B. & R. S. Lindzen (1974): The interaction of thermally excited gravity waves with mean flows, Geo. Fluid Dyn., 6:2, 149-191, https://doi.org/10.1080/03091927409365793
    • Plumb, R. A. (1975): Momentum transport by the thermal tide in the stratosphere of Venus, QJRMS 101:430, 763-776, https://doi.org/10.1002/qj.49710143005
    • Hou, A. Y. & B. F. Farrell (1987): Superrotation induced by critical-level absorption of gravity waves on Venus: an assessment, JAS, 44:7, 1049-1061, https://doi.org/10.1175/1520-0469(1987)044%3C1049:SIBCLA%3E2.0.CO;2
    • 松田佳久 (2000): 惑星気象学, 東京大学出版会, 1-204
    • Takagi, M. & Y. Matsuda (1999): Interpretation of Thompson's mechanism for Venus' atmospheric super-rotation and its extension to the spherical geometry, JMSJ, 77:5, 971-983, https://doi.org/10.2151/jmsj1965.77.5_971
    • Takagi, M. & Y. Matsuda (2000): Stability of convection between the day and night sides on the rotating sphere, JMSJ, 78:2, 181-186, https://doi.org/10.2151/jmsj1965.78.2_181
    • Tomasko, M. G., L. R. Doose, Peter H. Smith, & A. P. Odell (1980): Measurements of the flux of sunlight in the atmosphere of Venus, JGR, 85:A13, 8167-8186, https://doi.org/10.1029/JA085iA13p08167
    • Newman, M. & C. Leovy (1992): Maintenance of strong rotational winds in Venus' middle atmosphere by thermal tides, Science, 257:5070, 647-650, https://doi.org/10.1126/science.257.5070.647
    • Kouyama, T., T. Imamura, M. Nakamura, T. Satoh & Y. Futaana (2015): Vertical propagation of planetary-scale waves in variable background winds in the upper cloud region of Venus, Icarus 248, 560-568, https://doi.org/10.1016/j.icarus.2014.07.011
    • Takagi, M. & Y. Matsuda (2005a): Sensitivity of thermal tides in the Venus atmosphere to basic zonal flow and Newtonian cooling, GRL, 32:2, L02203, https://doi.org/10.1029/2004GL022060
    • Takagi, M. & Y. Matsuda (2005b): A further study on the stability of a baroclinic flow in cyclostrophic balance: stability of a cyclostrophic flow, GRL 32:19, L19804, https://doi.org/10.1029/2005GL023700
    • Takagi, M. & Y. Matsuda (2006): A study on the stability of a baroclinic flow in cyclostrophic balance on the sphere, GRL, 33:14, L14807, 1-5, http://dx.doi.org/10.1029/2006gl026200
    • Hoskins, B. J. & A. J. Simmons (1975); A multi-layer spectral model and the semi-implicit method, QJRMS, 101, 637-655, https://doi.org/10.1002/qj.49710142918
    • Crisp, D. (1986): Radiative forcing of the Venus mesosphere I. Solar fluxes and heating rates, Icarus 67, 484-514, https://doi.org/10.1016/0019-1035(86)90126-0
    • Crisp, D. (1989): Radiative forcing of the Venus mesosphere II. Thermal fluxes, cooling rates, and radiative equilibrium temperatures, Icarus 77:2, 391-413, https://doi.org/10.1016/0019-1035(89)90096-1
    • Seiff, A., J. T. Schofield, A. J. Kliore, F. W. Taylor. S. S. Limaye, H. E. Revercomb, L. A. Sromovsky, V. V. Kerzhanovich, V. I. Moroz, & M. Ya. Marov (1985): Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude, Adv Space Res-series 5:11, 3-58 (1985), https://doi.org/10.1016/0273-1177(85)90197-8
    • Takagi, M. & Y. Matsuda (2007): Effects of thermal tides on the Venus atmospheric superrotation, JGR, 112:D9, D09112, 1-8, http://dx.doi.org/10.1029/2006jd007901
    • Machado, P., T. Widemann, D. Luz, & J. Peralta (2014) Wind circulation regimes at Venus’ cloud tops: ground-based doppler velocimetry using CFHT/ESPaDOnS and comparison with simultaneous cloud tracking measurements using VEx/VIRTIS in February 2011, Icarus 243, 249-263, https://doi.org/10.1016/j.icarus.2014.08.030
    • Lebonnois, S., F. Hourrdin, V. Eymet, & A. Crespin R. Fournier, F. Forget (2010): Superrotation of Venus' atmosphere analyzed with a full general circulation model, JGR-Planets, 115:E6, https://doi.org/10.1029/2009JE003458
    • Lebonnois, S., N. Sugimoto, & G. Gilli (2016): Wave analysis in the atmosphere of Venus below 100-km altitude, simulated by the LMD Venus GCM, Icarus, 278:1, 38-51, https://doi.org/10.1016/j.icarus.2016.06.004

第7回 AFES-Venusでのスーパーローテーションや擾乱など

    講演日:2020年12月17日

    講演者:高木 征弘(京都産業大学)

    アーカイブ:講演動画 講演スライド

    参考文献:

    • W. Ohfuchi, H. Nakamura, M. K. Yoshioka, T. Enomoto, K. Takaya, X. Peng, S. Yamane, T. Nishimura, Y. Kurihara, & K. Ninomiya (2004): 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator: Preliminary outcomes of AFES (AGCM for the Earth Simulator), Journal of the Earth Simulator 1, 8-34.
    • Enomoto, T., A. Kuwano-Yoshida, N. Komori & W. Ohfuchi (2008): Description of AFES 2: improvements for high-resolution and coupled simulations, in High Resolution Numerical Modelling of the Atmosphere and Ocean, Springer New York, 77-97, https://doi.org/10.1007/978-0-387-49791-4_5
    • Tomasko, M. G., L. R. Doose, Peter H. Smith, & A. P. Odell (1980): Measurements of the flux of sunlight in the atmosphere of Venus, JGR, 85:A13, 8167-8186, https://doi.org/10.1029/JA085iA13p08167
    • Crisp, D. (1989): Radiative forcing of the Venus mesosphere II. Thermal fluxes, cooling rates, and radiative equilibrium temperatures, Icarus 77:2, 391-413, https://doi.org/10.1016/0019-1035(89)90096-1
    • Sugimoto, N., M. Takagi, & Y. Matsuda (2014a): Waves in a Venus general circulation model, GRL, 41:21, 7461-7467, https://doi.org/10.1002/2014GL061807
    • Sugimoto, N., M. Takagi, & Y. Matsuda (2014b): Baroclinic instability in the Venus atmosphere simulated by GCM, JGR-Planets, 119:8, 1950-1968, https://doi.org/10.1002/2014JE004624
    • Young, R. E., H. Houben, & L. Pfister (1984): Baroclinic instability in the Venus atmosphere, JAS, 41:15, 2310-2333, https://doi.org/10.1175/1520-0469(1984)041%3C2310:BIITVA%3E2.0.CO;2
    • Kouyama, T., T. Imamura, M. Nakamura, T. Satoh, & Y. Futaana (2012): Horizontal structure of planetary-scale waves at the cloud top of Venus deduced from Galileo SSI images with an improved cloud-tracking technique, PSS 60:1, 207-216, https://doi.org/10.1016/j.pss.2011.08.008
    • Iga, S. & Y. Matsuda (2005): Shear instability in a shallow water model with implications for the Venus atmosphere, JAS 62:7, 2514-2527, https://doi.org/10.1175/JAS3484.1
    • Crisp, D., D. A. Allen, D. H. Grinspoon, & J. B. Pollack (1991): The dark side of Venus: near-infrared images and spectra from the Anglo-Australian observatory, Science, 253, 1263-1266, https://doi.org/10.1126/science.11538493
    • Hosouchi, M., T. Kouyama, N. Iwagami, S. Ohtsuki, & M. Takagi (2012): Wave signature in the Venus dayside cloud layer at 58–64km observed by ground-based infrared spectroscopy, Icarus 220:2, 552-560, https://doi.org/10.1016/j.icarus.2012.04.027
    • Ando, H., N. Sugimoto, M. Takagi, H. Kashimura, T. Imamura, & Y. Matsuda (2016): The puzzling Venusian polar atmospheric structure reproduced by a general circulation model, Nat. Commun., 7, 10398, https://doi.org/10.1038/ncomms10398
    • Taylor et al. (1980)
    • Taylor, F. W., R. Beer, M. T. Chahine, D. J. Diner, L. S. Elson, R. D. Haskins, D. J. McCleese, J. V. Martonchik, P. E. Reichley, S. P. Bradley, J. Delderfield, J. T. Schofield, C. B. Farmer, L. Froidevaux, J. Leung, M. T. Coffey, & J. C. Gille (1980): Structure and meteorology of the middle atmosphere of Venus: infrared remote sensing from the Pioneer Orbiter, JGR-Space Phys. 85:A13, 7963-8006, https://doi.org/10.1029/JA085iA13p07963
    • Ando, H, T. Imamura, N. Sugimoto, H. Kashimura, S. Tellmann, M. Patzold, B. Hausler, & Y. Matsuda (2017): Vertical structure of the axi-asymmetric temperature disturbance in the Venusian polar atmosphere: comparison between radio occultation measurements and GCM results, JGR-Planet, 122:8, 1687-1703, https://doi.org/10.1002/2016JE005213
    • Apt, J. & J. Leung (1982): Thermal periodicities in the Venus atmosphere, Icarus, 49:3, 427-437, https://doi.org/10.1016/0019-1035(82)90047-1
    • Ando, H., M. Takagi, T. Fukuhara, T. Imamura, N. Sugimoto, H. Sagawa, K. Noguchi, S. Tellmann, M. Pätzold, B. Häusler, Y. Murata, H. Takeuchi, A. Yamazaki, T. Toda, A. Tomiki, R. Choudhary, K. Kumar, G. Ramkumar, & M. Antonita (2018): Local time dependence of the thermal structure in the Venusian equatorial upper atmosphere: comparison of Akatsuki radio occultation measurements and GCM results, JGR-Planets, 123:9, 2270-2280, https://doi.org/10.1029/2018JE005640
    • Takagi, M., N. Sugimoto, H. Ando, & Y. Matsuda (2018): Three-dimensional structures of thermal tides simulated by a Venus GCM, JGR-Planets, 123:2, 335-352, https://doi.org/10.1002/2017JE005449
    • Pechmann, J. B. & A. P. Ingersoll (1984): Thermal tides in the atmosphere of Venus: comparison of model results with observations, JAS 41:22, 3290-3313, https://doi.org/10.1175/1520-0469(1984)041%3C3290:TTITAO%3E2.0.CO;2
    • Takagi, M. & Y. Matsuda (2005): A further study on the stability of a baroclinic flow in cyclostrophic balance: stability of a cyclostrophic flow, GRL 32:19, L19804, https://doi.org/10.1029/2005GL023700
    • Takagi, M. & Y. Matsuda (2006): A study on the stability of a baroclinic flow in cyclostrophic balance on the sphere, GRL, 33:14, L14807, 1-5, http://dx.doi.org/10.1029/2006gl026200
    • Kouyama, T., M. Taguchi, T. Fukuhara, T. Imamura, T. Horinouchi, T. M. Sato, S. Murakami, G. L. Hashimoto, Y. J. Lee, M. Futaguchi, T. Yamada, M. Akiba, T. Satoh, & M. Nakamura (2019): Global structure of thermal tides in the upper cloud layer of Venus revealed by LIR on board Akatsuki, GRL 46:16, 9457-9465, https://doi.org/10.1029/2019GL083820
    • Haus, R., D. Kappel & G. Arnold (2015): Radiative heating and cooling in the middle and lower atmosphere of Venus and responses to atmospheric and spectroscopic parameter variations, PSS 117, 262-294, https://doi.org/10.1016/j.pss.2015.06.024
    • Taguchi, M., T. Fukuhara, T. Imamura, M. Nakamura, N. Iwagami, M. Ueno, M. Suzuki, G. L. Hashimoto, & K. Mitsuyama (2007): Longwave infrared camera onboard the Venus Climate Orbiter, Adv. Space Res. 40:6, 861-868, https://doi.org/10.1016/j.asr.2007.05.085
    • T. Horinouchi, T. Kouyama, Y. J. Lee, S. Murakami, K. Ogohara, M. Takagi, T. Imamura, K. Nakajima, J. Peralta, A. Yamazaki, M. Yamada & S. Watanabe (2018): Mean winds at the cloud top of Venus obtained from two-****wavelength UV imaging by Akatsuki, EPS, 70:10, 1-19, https://doi.org/10.1186/s40623-017-0775-3
    • Kashimura, H., N. Sugimoto, M. Takagi, Y. Matsuda, W. Ohfuchi, T. Enomoto, K. Nakajima, M. Ishiwatari, T. M. Sato, G. L. Hashimoto, T. Satoh, Y. O. Takahashi, & Y.-Y. Hayashi (2019): Planetary-scale streak structure reproduced in high-resolution simulations of the Venus atmosphere with a low-stability layer, Nat. Commun., 10:23, 1-11, https://doi.org/10.1038/s41467-018-07919-y
    • Sugimoto, N. M. Takagi, & Y. Matsuda (2019): Fully developed superrotation driven by the mean meridional circulation in a Venus GCM, GRL, 46:3, 1776-1784, https://doi.org/10.1029/2018GL080917
    • Lebonnois, S., N. Sugimoto, & G. Gilli (2016): Wave analysis in the atmosphere of Venus below 100-km altitude, simulated by the LMD Venus GCM, Icarus, 278:1, 38-51, https://doi.org/10.1016/j.icarus.2016.06.004
    • Ando, H., M.Takagi, N. Sugimoto, H. Sagawa, & Y. Matsuda (2020): Venusian cloud distribution simulated by a general circulation model, JGR-Planets, 125:7, https://doi.org/10.1029/2019JE006208
    • Carlson, R. W., L. W. Kamp, K. H. Baines, & J. B. Pollack, D. H. Grinspoon, Th. Encrenaz, P. Drossart, F. W. Taylor (1993): Variations in Venus cloud particle properties: a new view of Venus’s cloud morphology as observed by the Galileo near-infrared mapping spectrometer, PSS 41:7, 477-485, https://doi.org/10.1016/0032-0633(93)90030-6
    • Cottini, V., N. I. Ignatiev, G. Piccioni, & P. Drossart (2015): Water vapor near Venus cloud tops from VIRTIS-H/Venus express observations 2006–2011, PSS, 113-114, 219-225, https://doi.org/10.1016/j.pss.2015.03.012
    • Oschlisniok, J., M. Pätzold, B. Häusler, S. Tellmann, M. Bird, & T. Andert (2017): Sulfuric acid vapor in the atmosphere of Venus as observed by the Venus Express radio science experiment VeRa, American Astronomical Society, DPS meeting #49, id.502.03
    • Ando, H., M. Takagi, H. Sagawa, N. Sugimoto, M. Sekiguchi, & Y. Matsuda (2021) Quasi‐periodic variation of the lower equatorial cloud induced by atmospheric waves on Venus, JGR-Planets, 126:6, e2020JE006781, https://doi.org/10.1029/2020JE006781

第8回 表層環境システムの安定性

    講演日:2020年12月25日

    講演者:はしもと じょーじ(岡山大学)

    アーカイブ:講演動画 講演スライド

    参考文献:

    • Hashimoto, G. L. & Y. Abe (2005): Climate control on Venus: comparison of the carbonate and pyrite models, PSS, 53:8, 839-848, https://doi.org/10.1016/j.pss.2005.01.005
    • Hashimoto, G. L., M. Roos-Serote, S. Sugita, M. S. Gilmore, L. W. Kamp, R. W. Carlson, & K. H. Baines, (2008): Felsic highland crust on venus suggested by Galileo near-infrared mapping spectrometer data, JGR-Planets, 113:E5, E00B24, https://doi.org/10.1029/2008JE003134
    • Hashimoto, G. L. & T. Imamura (2001): Elucidating the rate of volcanism on Venus: detection of lava eruptions using near-infrared observations, Icarus, 154:2, 239-243, https://doi.org/10.1006/icar.2001.6713
    • Urey, H. C. (1952): On the early chemical history of the Earth and the origin of life, Proceedings of National Academy of Science of USA, 38:4, 351-363, https://doi.org/10.1073/pnas.38.4.351
    • Lewis, J. S. (1970): Ice Clouds on Venus?, JAS, 27:2, 333-334, https://doi.org/10.1175/1520-0469(1970)027%3C0333:ICOV%3E2.0.CO;2
    • Fegley, B. J. & A. H. Treiman (1992): Chemistry of atmosphere-surface interactions on Venus and Mars, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, 66, 7-71, https://doi.org/10.1029/GM066p0007
    • Bullock, M. A. & D. H. Grinspoon (1996): The stability of climate on Venus, JGR-Planets, 101:E3, 7521-7529, https://doi.org/10.1029/95JE03862
    • Hashimoto, G. L., Y. Abe, & S. Sasaki, (1997): CO2 amount on Venus constrained by a criterion of topographic-greenhouse instability, GRL, 24:3, 289-292, https://doi.org/10.1029/96GL04006
    • Solomon, S. C., S. E. Smrekar, D. L. Bindschadler, R. E. Grimm, W. M. Kaula, G. E. McGill, R. J. Phillips, R. S. Saunders, G. Schubert, S. W. Squyres, & E. R. Stofan (1992): Venus tectonics: an overview of Magellan observations, JGR-Plantes, 97:E8, 13199-13255, https://doi.org/10.1029/92JE01418
    • Bullock, M. A. & D. H. Grinspoon (2001): The recent evolution of climate on Venus, Icarus, 150:1, 19-37, https://doi.org/10.1006/icar.2000.6570
    • Zolotov, M. Y. (1991): Pyrite stability on the surface of Venus, Lunar Planet. Sci., 22, 1569-1570
    • Zolotov, M. Y. (1995): A model of the Venus atmosphere evolution along with titanhematite-magnetite-pyrite buffer, Lunar and Planetary Conference, XXVI, 1569
    • Klose, K. B., J. A. Wood, & A. Hashimoto (1992): Mineral equilibria and the high radar reflectivity of Venus mountaintops, JGR-Planets, 97:E10, 16353-16369, https://doi.org/10.1029/92JE01865
    • Pollack, J. B., O. B. Toon, R. C. Whitten, R. Boese, B. Ragent, M. Tomasko, L. Esposito, L. Travis, & D. Wiedman (1980): Distribution and source of the UV absorption in Venus' atmosphere. JGR, 85, 8141-8150, https://doi.org/10.1029/JA085iA13p08141
    • Seiff, A., J. T. Schofield, A. J. Kliore, F. W. Taylor. S. S. Limaye, H. E. Revercomb, L. A. Sromovsky, V. V. Kerzhanovich, V. I. Moroz, & M. Ya. Marov (1985): Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude, Adv Space Res-series 5:11, 3-58 (1985), https://doi.org/10.1016/0273-1177(85)90197-8
    • Hashimoto, G. L. & Y. Abe (2001): Predictions of a simple cloud model for water vapor cloud albedo feedback on Venus, JGR-Planets, 106:E7, 14675-14690, https://doi.org/10.1029/2000JE001266
    • Hashimoto, G. L. & Y. Abe (2000): Stabilization of Venus’ climate by a chemical-albedo feedback, EPS, 52: 197-200, https://doi.org/10.1186/BF03351628
    • Hashimoto, G. L. & Y. Abe (2005): Climate control on Venus: comparison of the carbonate and pyrite models, PSS, 53:8, 839-848, https://doi.org/10.1016/j.pss.2005.01.005
    • Fegley, B. J., K. Lodders, A. H. Treiman, & G. Klingelhofer (1995): The rate of pyrite decomposition on the surface of Venus, Icarus, 115:1, 159-180, https://doi.org/10.1006/icar.1995.1086
    • Storm, R. G., G. G. Schaber, & D. D. Dawson (1994): The global resurfacing of Venus, JGR-Planets, 99:E5, 10899-10926, https://doi.org/10.1029/94JE00388
    • Baslievsky, A. T., G. A. Burba, M. A. Inanov, V. P. Kryuchkov, A. A. Pronin, N. N. Bobina, V. P. Shashkina, & W. Head, (1997): The photogeologic mapping of northern Venus, Lunar and Planetary Conference, XXVIII, 1132

第9回 地表放射率から金星の過去を探る

    講演日:2021年1月12日

    講演者:はしもと じょーじ(岡山大学)

    アーカイブ:講演動画 講演スライド

    参考文献:

    • Hashimoto, G. L. & Y. Abe (2005): Climate control on Venus: comparison of the carbonate and pyrite models, PSS, 53:8, 839-848, https://doi.org/10.1016/j.pss.2005.01.005
    • Hashimoto, G. L., M. Roos-Serote, S. Sugita, M. S. Gilmore, L. W. Kamp, R. W. Carlson, & K. H. Baines, (2008): Felsic highland crust on venus suggested by Galileo near-infrared mapping spectrometer data, JGR-Planets, 113:E5, E00B24, https://doi.org/10.1029/2008JE003134
    • Hashimoto, G. L. & T. Imamura (2001): Elucidating the rate of volcanism on Venus: detection of lava eruptions using near-infrared observations, Icarus, 154:2, 239-243, https://doi.org/10.1006/icar.2001.6713
    • Allen, D. A. & J. W. Crawford (1984): Cloud structure on the dark side of Venus, Nature, 307, 222-224, https://doi.org/10.1038/307222a0
    • Carlson, R. W., K. H. Baines, T. H. Encrenaz, F. W. Taylor, P. Drossart L. W. Kamp, J. B. Pollack, E. Lellouch, A. D. Collard, S. B. Calcutt, D. Grinspoon, P. R. Weissman, W. D. Smythe, A. C. Ocampo, G. E. Danielson, F. P. Fanale, T. V. Johnson, H. H. Kieffer, D. L. Matson, T. B. Mccord, & L. A. Soderblom (1991): Galileo Infrared Imaging Spectroscopy measurements at Venus, Science 253, 1541-1548, https://doi.org/10.1126/science.253.5027.1541
    • Baines, K. H., G. Bellucci, J. P. Bibring, & R.H. Brown et al. (2000): Detection of sub-micron radiation from the surface of Venus by Cassini/VIMS, Icarus, 148:1, 307-311, https://doi.org/10.1006/icar.2000.6519
    • Lecacheux, J., P. Drossart, P. Laques, F. Deladerriere, & F. Colas, (1993): Detection of the surface of Venus at 1.0 µm from ground-based observations, PSS, 41:7, 543-549, https://doi.org/10.1016/0032-0633(93)90035-Z
    • Meadows, V. S. & D. Crisp (1996): Ground-based near-infrared observations of the Venus nightside: the thermal structure and water abundance near the surface, JGR-Planets, 101:E2, 4595-4622, https://doi.org/10.1029/95JE03567
    • Hashimoto, G. L. & S. Sugita (2003): On observing the compositional variability of the surface of Venus using nightside near-infrared thermal radiation, JGR-Planets, 108:E9, https://doi.org/10.1029/2003JE002082
    • Moroz, V. I. (2002): Estimates of visibility of the surface of Venus from descent probes and balloons, PSS, 50:3, 287-297, https://doi.org/10.1016/S0032-0633(01)00128-3
    • Carlson, R. W., P. R. Weissman, W. D. Smythe, J. C. Mahoney, & The NIMS Science and Engineering Teams, (1992): Near-infrared mapping spectrometer experiment on Galileo, in The Galileo Mission, Springer, 457-502, https://doi.org/10.1007/978-94-011-2512-3_18
    • Carlson, R. W., L.W. Kamp, K. H. Baines, J. B. Pollack, D. H. Grinspoon, Th. Encrenaz, P. Drossart, & F.W. Taylor (1993): Variations in Venus cloud particle properties: a new view of Venus's cloud morphology as observed by the Galileo near-infrared mapping spectrometer, PSS, 41:7, 477-485, https://doi.org/10.1016/0032-0633(93)90030-6
    • Rothman, L. S., A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, & K. Yoshino (2003): The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001, J. Quant. Spectrosc. Radiat. Transfer, 60, 665-710, https://doi.org/10.1016/S0022-4073(03)00146-8
    • Pollack, J. B., J. B. Dalton, D. Grinspoon, R. B. Wattson, R. Freedman, D. Crisp, D. A. Allen, B. Bezard, C. DeBergh, L. P Giver, Q. Ma, & R. Tipping (1993): Near-infrared light from Venus' nightside: a spectroscopic analysis, Icarus, 103:1, 1-42, https://doi.org/10.1006/icar.1993.1055
    • Bézard, B., C. de Bergh, D. Crisp, & J.-P. Maillard (1990): The deep atmosphere of Venus revealed by high-resolution night-side spectra, Nature, 345, 508-511, https://doi.org/10.1038/345508a0
    • Palmer, K. F. and D. Williams (1975): Optical constants of sulfuric acid: Application to the clouds of Venus?, Appl. Opt., 14, 208-219, https://doi.org/10.1364/AO.14.000208

第10回 活火山探索

    講演日:2021年1月21日

    講演者:はしもと じょーじ(岡山大学)

    アーカイブ:講演動画 講演スライド

    参考文献:

    • Hashimoto, G. L. & Y. Abe (2005): Climate control on Venus: comparison of the carbonate and pyrite models, PSS, 53:8, 839-848, https://doi.org/10.1016/j.pss.2005.01.005
    • Hashimoto, G. L., M. Roos-Serote, S. Sugita, M. S. Gilmore, L. W. Kamp, R. W. Carlson, & K. H. Baines, (2008): Felsic highland crust on venus suggested by Galileo near-infrared mapping spectrometer data, JGR-Planets, 113:E5, E00B24, https://doi.org/10.1029/2008JE003134
    • Hashimoto, G. L. & T. Imamura (2001): Elucidating the rate of volcanism on Venus: detection of lava eruptions using near-infrared observations, Icarus, 154:2, 239-243, https://doi.org/10.1006/icar.2001.6713
    • Esposito, L. W. (1984): Sulfur dioxide: episodic injection shows evidence for active Venus volcanism, Science, 233:4640, 1072-1074, https://doi.org/10.1126/science.223.4640.1072
    • Marcq, E., J. L. Bertaux, F. Montmessin, & D. Belyaev (2013): Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere, Nat. Geosci., 6, 25-28, https://doi.org/10.1038/ngeo1650
    • Wilson, L. & J. W. Head, III (1983): A comparison of volcanic eruption processes on Earth, Moon, Mars, Io, and Venus, Nature, 302, 663-669, https://doi.org/10.1038/302663a0
    • Oyama, V. I., G. C. Carle, F. Woeller, J. B. Pollack, R. T. Reynolds, & R. A. Craig (1980): Pioneer Venus gas chromatography of the lower atmosphere of Venus, JGR, 85:A13, 7891-7902, https://doi.org/10.1029/JA085iA13p07891
    • Fegley, B., Jr. & R. G. Prinn (1989): Estimation of the rate of volcanism on Venus from reaction rate measurements, Nature, 337, 55-58, https://doi.org/10.1038/337055a0
    • Hashimoto, G. L. & S. Sugita (2003): On observing the compositional variability of the surface of Venus using nightside near-infrared thermal radiation, JGR-Planets, 108:E9, https://doi.org/10.1029/2003JE002082
    • Head, J. W., III & L. Wilson (1986): Volcanic processes and landforms on Venus: Theory, predictions, and observations, JGR, 91:B9, 9407-9446, https://doi.org/10.1029/JB091iB09p09407
    • Basilevsky, A. T., J. W. Head, G. G. Schaber, & R. G. Strom (1997): The resurfacing history of Venus, In Venus II (S. W. Bougher, D. M. Hunten, and R. J. Phillips, Eds.), 1047-1084. Univ of Arizona Press, Tucson.
    • Roberts, K. M., J. E. Guest, J. W. Head, & M. G. Lancaster (1992): Mylitta fluctus, Venus: Rift-related, centralized volcanism and the emplacement of large-volume flow units, JGR, 97:E10, 15991-16015, https://doi.org/10.1029/92JE01245

第11回 金星の雲

    講演日:2021年3月18日

    講演者:佐藤 毅彦(ISAS/JAXA)

    アーカイブ:講演動画 講演スライド

    参考文献:

    • Biancini, F. (1728): Venus Map, in Hesperi et Phosphori nova phaenomena sive observationes circa Planetam Veneris
    • Slipher, E. C. (1964): A Photographic Study of the Brighter Planets, Lowell Observatory, 1-125
    • Hansen, J. E. & J. W. Hovenier (1974): Interpretation of the polarization of Venus, JAS, 31:4, 1137-1160, https://doi.org/10.1175/1520-0469(1974)031%3C1137:IOTPOV%3E2.0.CO;2
    • Knollenberg, R. G. & D. M. Hunten (1980): The microphysics of the clouds of Venus: results of the pioneer venus particle size spectrometer experiment, JGR-Space Phys., 85:A13, 8039-8058, https://doi.org/10.1029/JA085iA13p08039
    • Allen, D. A. & J. W. Crawford, (1984): Cloud structure on the dark side of Venus, Nature, 307, 222-224, https://doi.org/10.1038/307222a0
    • Carlson, R. W., L. W. Kamp, K. H. Baines, & J. B. Pollack, D. H. Grinspoon, Th. Encrenaz, P. Drossart, F. W. Taylor (1993): Variations in Venus cloud particle properties: a new view of Venus’s cloud morphology as observed by the Galileo near-infrared mapping spectrometer, PSS 41:7, 477-485, https://doi.org/10.1016/0032-0633(93)90030-6
    • Dollfus, A. (1955): Étude visuelle et photographique de l'atmosphère de Vénus, L'Astronomie, 69, 413
    • Lyot, B. (1929): Recherches Sur la polarisation de la lumiere des planetes et de quelques subtances terrestres Ann. Obs. Meudon, 8, 1-161
    • Coffeen, D. L. & T. Gehreis (1969): Wavelength dependence of polarization. XV. observations of Venus, Astro. J., 72:3, 433-445
    • Kawabata, K., D L. Coffeen, J. E. Hansen, W. A. Lane, M. Sato, & L. D. Travis (1980): Cloud and haze properties from pioneer Venus polarimetry, JGR-Space Phys., 85:A13, 8129-8140, https://doi.org/10.1029/JA085iA13p08129
    • Barstow, J. K. & C. C. C. Tsang, C. F. Wilson et al. (2012): Models of the global cloud structure on venus derived from Venus Express observations, Icarus, 217:2, 542-560, https://doi.org/10.1016/j.icarus.2011.05.018
    • Pollack, J. B., O. B. Toon, R. C. Whitten, R. Boese, B. Ragent, M. Tomasko, L. Esposito, L. Travis, & D. Wiedman (1980): Distribution and source of the UV absorption in Venus' atmosphere. JGR, 85, 8141-8150, https://doi.org/10.1029/JA085iA13p08141
    • McGouldrick, K. (2017): Effects of variation in coagulation and photochemistry parameters on the particle size distributions in the Venus clouds. Earth Planets Space 69:161, 1-28, https://doi.org/10.1186/s40623-017-0744-x
    • Allen, D. A. & J. W. Crawford (1984): Cloud structure on the dark side of Venus, Nature, 307, 222-224, https://doi.org/10.1038/307222a0
    • Crisp, D., D. A. Allen, D. H. Grinspoon, & J. B. Pollack (1991): The dark side of Venus: near-infrared images and spectra from the Anglo-Australian observatory, Science, 253, 1263-1266, https://doi.org/10.1126/science.11538493
    • Barstow, J. K., F. W. Taylor, C. C. C. Tsang, C. F. Wilson, P. G. J. Irwin, P. Drossart, & G. Piccioni (2010): Venus Cloud Properties from Venus Express VIRTIS Observations, American Astronomical Society, DPS meeting #42.
    • Grinspoon, D. H., J. B. Pollack, B. R. Sitton, R. W. Carlson, L. W. Kamp, K. H. Baines, Th. Encrenaz, & F. W. Taylor (1993): Probing Venus’s cloud structure with Galileo NIMS, PSS 41:7, 515-542, https://doi.org/10.1016/0032-0633(93)90034-Y
    • Haus, R., D. Kappel & G. Arnold (2013): Self-consistent retrieval of temperature profiles and cloud structure in the northern hemisphere of Venus using VIRTIS/VEX and PMV/VENERA-15 radiation measurements, PSS 89, 77-101, https://doi.org/10.1016/j.pss.2013.09.020
    • Arney, G., V. Meadows, D. Crisp, S. J. Schmidt, J. Bailey, & T. Robinson (2014): Spatially resolved measurements of H2O, HCl, CO, OCS, SO2, cloud opacity, and acid concentration in the Venus near‐infrared spectral windows, JGR-Planets 119:8, 1860-1891, https://doi.org/10.1002/2014JE004662
    • Satoh, T., T. M. Sato, M. Nakamura, Y. Kasaba, M. Ueno, M. Suzuki, G. L. Hashimoto, T. Horinouchi, T. Imamura, A. Yamazaki, T. Enomoto, Y. Sakurai, K. Takami, K. Sawai, T. Nakakushi, T. Abe, N. Ishii, C. Hirose, N. Hirata, M. Yamada, S. Murakami, Y. Yamamoto, T. Fukuhara, K. Ogohara, H. Ando, K. Sugiyama, H. Kashimura, & S. Ohtsuki (2017): Performance of Akatsuki/IR2 in Venus orbit: the first year, Earth Planets Space 69, 1-19, https://doi.org/10.1186/s40623-017-0736-x
    • Satoh, T., M. Nakamura, M. Ueno, K. Uemizu, M. Suzuki, T. Imamura, Y. Kasaba, S. Yoshida, & M. Kimata (2016) Development and in-flight calibration of IR2: 2-µm camera onboard Japan’s Venus orbiter, Akatsuki, EPS 68:74, 1-11, https://doi.org/10.1186/s40623-016-0451-z
    • Satoh, T., C. W. Vun, M. Kimata, T. Horinouchi, & T. M. Sato (2021): Venus night-side photometry with “cleaned” Akatsuki/IR2 data: Aerosol properties and variations of carbon monoxide, Icarus 355, 114134, https://doi.org/10.1016/j.icarus.2020.114134
    • Sato, T. M. T. Satoh, H. Sagawa, N. Manago, Y. J. Lee, S. Murakami, K. Ogohara, G. L. Hashimoto, Y. Kasaba, A. Yamazaki, M. Yamada, S. Watanabe, T. Imamura, & M. Nakamura (2020): Dayside cloud top structure of Venus retrieved from Akatsuki IR2 observations, Icarus 345, 113682, https://doi.org/10.1016/j.icarus.2020.113682
    • Wilson, C. F., S. Guerlet, P. G. J. Irwin, C. C. C. Tsang, F. W. Taylor, R. W. Carlson, P. Drossart, & G. Piccioni (2008): Evidence for anomalous cloud particles at the poles of Venus, JGR-Planets 113:E9, E00B13, 1-12, https://doi.org/10.1029/2008JE003108

第12回 金星の雲物理のモデリング

    講演日:2021年4月6日

    講演者:今村 剛(東京大学)

    アーカイブ:講演動画 (あかつき関係者限定) 講演スライド (あかつき関係者限定)

    参考文献:

    • Hansen, J. E. & J. W. Hovenier (1974): Interpretation of the polarization of Venus, JAS, 31:4, 1137-1160, https://doi.org/10.1175/1520-0469(1974)031%3C1137:IOTPOV%3E2.0.CO;2
    • McGouldrick, K., O. B. Toon, & D. H. Grinspoon (2011): Sulfuric acid aerosols in the atmospheres of the terrestrial planets, PSS, 59:10, 934-941, https://doi.org/10.1016/j.pss.2010.05.020
    • Pollack, J. B., O. B. Toon, & R. Boese, (1980): Greenhouse models of Venus' high surface temperature, as constrained by pioneer Venus measurements, JGR-Space Phys., 85:A13, 8223-8231, https://doi.org/10.1029/JA085iA13p08223
    • Imamura, T., H. Ando, S. Tellmann, M. Pätzold, B. Häusler, A. Yamazaki, T. M. Sato, K. Noguchi, Y. Futaana, J. Oschlisniok, S. Limaye, R. K. Choudhary, Y. Murata, H. Takeuchi, C. Hirose, T. Ichikawa, T. Toda, A. Tomoki, T. Abe, Z. Yamamoto, H. Noda, T. Iwata, S. Murakami, T. Satoh, T. Fukuhara, K. Ogohara, K. Sugiyama, H. Kashimura, S. Ohtsuki, S. Takagi, Y. Yamamoto, N. Hirata, G. L. Hashimoto, M. Yamada, M. Suzuki, N. Ishii, T. Hayashiyama, Y. J. Lee, and M. Nakamura (2017): Initial performance of the radio occultation experiment in the Venus orbiter mission Akatsuki, EPS, 69, 137, https://doi.org/10.1186/s40623-017-0722-3
    • Kolodner, M. A. & P. G. Steffes (1998): The microwave absorption and abundance of sulfuric acid vapor in the Venus atmosphere based on new laboratory measurements, Icarus, 132:1, 151-169, https://doi.org/10.1006/icar.1997.5887
    • Jenkins, J. M. & P. G. Steffes (1991): Results for 13-cm absorptivity and H2SO4 abundance profiles from the season 10 (1986) Pioneer Venus Orbiter radio occultation experiment, Icarus, 90:1, 129-138, https://doi.org/10.1016/0019-1035(91)90075-5
    • Oschlisniok, J., & B. Häusler, M. Pätzold, S. Tellmann, M. K. Bird, K. Peter, T. P. Andert (2021): Sulfuric acid vapor and sulfur dioxide in the atmosphere of Venus as observed by the Venus Express radio science experiment VeRa, Icarus 362, 114405. https://doi.org/10.1016/j.icarus.2021.114405
    • Bertaux, J. L., T. Widemann, A. Hauchecorne, V. I. Moroz, A. P. Ekonomov (1996): VEGA 1 and VEGA 2 entry probes: An investigation of local UV absorption (220–400 nm) in the atmosphere of Venus (SO2 aerosols, cloud structure), JGR-Planets, 101:E5, 12709-12745, https://doi.org/10.1029/96JE00466
    • Imamura, T. & G. L. Hashimoto (1998): Venus cloud formation in the meridional circulation, JGR-Planets, 103:E13, 31349-31366, https://doi.org/10.1029/1998JE900010
    • Imamura, T. & G. L. Hashimoto (2001) Microphysics of Venusian clouds in rising tropical air, JAS, 58:23, 3597-3612, https://doi.org/10.1175/1520-0469(2001)058%3C3597:MOVCIR%3E2.0.CO;2
    • Hinson, D. P., S. W. Asmar, D. S. Kahan, V. Akopian, R. M. Haberle, A. Spiga, J. T. Schofield, A. Kleinböhl, W. A. Abdou, S. R. Lewis, M. Paik, & S. G. Maalouf (2014): Initial results from radio occultation measurements with the Mars Reconnaissance Orbiter: a nocturnal mixed layer in the tropics and comparisons with polar profiles from the Mars Climate Sounder, Icarus, 243, 91-103, https://doi.org/10.1016/j.icarus.2014.09.019
    • McGouldrick, K. & O. B. Toon (2007): Investigation of possible causes of the holes in the condensational Venus cloud using a microphysical cloud model with a radiative-dynamical feedback, Icarus, 191:1, 1-24, https://doi.org/10.1016/j.icarus.2007.04.007
    • Imamura, T., T. Higuchi, Y. Maejima, M. Takagi, N. Sugimoto, K. Ikeda, & H. Ando (2014): Inverse insolation dependence of Venus’ cloud-level convection, Icarus 228, 181-188, https://doi.org/10.1016/j.icarus.2013.10.012
    • Lefèvre, M., A. Spiga, & S. Lebonnois (2017): Three‐dimensional turbulence‐resolving modeling of the Venusian cloud layer and induced gravity waves, JGR Planets 122:1, 134-149, https://doi.org/10.1002/2016JE005146
    • James, E. P., O. B. Toon, & G. Schubert (1997): A numerical microphysical model of the condensational Venus cloud, Icarus, 129:1, 147-171, https://doi.org/10.1006/icar.1997.5763
    • Andrews, D. G. (2010): An Introduction to Atmospheric Physics, Cambridge University Press,
    • Yamamoto, M. & H. Tanaka (1998): The Venusian Y-shaped cloud pattern based on an aerosol-transport model, JAS, 55:8, 1400-1416, https://doi.org/10.1175/1520-0469(1998)055%3C1400:TVYSCP%3E2.0.CO;2
    • Hamill, P., E. J. Jensen, P. B. Russell, & J. J. Bauman (1997): The life cycle of stratospheric aerosol particles, BAMS 78:7, 1395-1410, https://doi.org/10.1175/1520-0477(1997)078%3C1395:TLCOSA%3E2.0.CO;2
    • Yamamoto, M. & M. Takahashi (2006): An aerosol transport model based on a two-moment microphysical parameterization in the Venus middle atmosphere: Model description and preliminary experiments, JGR 111:E8, E08002, 1-12, https://doi.org/10.1029/2006JE002688
    • Lee, C., S. R. Lewis, & P. L. Read (2010): A bulk cloud parameterization in a Venus General Circulation Model, Icaurs, 206:2, 662-668, https://doi.org/10.1016/j.icarus.2009.09.017
    • Ando, H., M.Takagi, N. Sugimoto, H. Sagawa, & Y. Matsuda (2020): Venusian cloud distribution simulated by a general circulation model, JGR-Planets, 125:7, https://doi.org/10.1029/2019JE006208
    • Peralta, J., T. Navarro, C. W. Vun, A. Sánchez-Lavega, K. McGouldrick, T. Horinouchi, T. Imamura, R. Hueso, J. P. Boyd, G. Schubert, T. Kouyama, T. Satoh, N. Iwagami, E. F. Young, M. A. Bullock, P. Machado, Y. J. Lee, S. S. Limaye, M. Nakamura, S. Tellmann, A. Wesley, & P. Miles (2020): A Long-lived Sharp Disruption on the Lower Clouds of Venus, GRL, 47:11, e2020GL087221, 1-10, https://doi.org/10.1029/2020GL087221
    • Salby, M. L. (1996): Fundamentals of Atmospheric Physics, Academic Press
    • Murray, B. J., T. W. Wilson, S. Dobbie, Z. Cui, S. M. R. K. Al-Jumur, O. Möhler, M. Schnaiter, R. Wagner, S. Benz, M. Niemand, H. Saathoff, V. Ebert, S. Wagner & B. Kärcher (2010): Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions, Nat. Geosci. 3, 233-237, https://doi.org/10.1038/ngeo817
    • Fowler, K., P. Connolly, & D. Topping (2020) Modelling the effect of condensed-phase diffusion on the homogeneous nucleation of ice in ultra-viscous particles,d Atmos Chem Phys 20:2, 683-698, https://doi.org/10.5194/acp-20-683-2020