

月周回及び月面での質量分析

1. KAGUYA観測
 2. 将来着陸探査

横田勝一郎(大阪大) 衛星系研究会2020.02.20

宇宙環境(惑星間空間)の観測的研究

The solar wind includes: H+, He++, O⁷⁺, O⁶⁺, ...

Spaceborne particle experiments (mass spectrometer)

Mission	Instruments	2000年	2005年	2010年	2015年	2020年	2025年	2030年
SELENE(KAGUYA)	PACE -							
BepiColombo-MMO(MIO)	MIA, MEA, MSA							
MMS	FPI-DIS x16							
ERG(ARASE)	MEPe&i							
MMX	MSA				_			
月極域探査	Mass							
OKEANOS	HRMS							

地球型惑星・衛星系での物質の放出と供給

H+, He+, O+, N+, O₂+...

Interplanetary dust/

Na, K, O, C, Ar, ...

Micrometeoroid

Exosphere

地球型惑星・衛星系での物質の放出と供給

・月への物質供給

- 太陽風(H+, He++, O⁷⁺, O⁶⁺, …)
- Interplanetary dust/Micrometeoroid
- 地球からの散逸大気(H+, He+, O+, N+, O2-Terada+2017, Yokota+2017, Seki+2019

- ・月からの物質放出
 - 外気圏 Exosphere →
 - Pickup ions

Species	Surface Density	Sensed by:	Reported by:
	or tangent		
	column density:		
⁴⁰ Ar	$8 \times 10^4 / \text{cm}^3$	LADEE NMS	Benna et al., 2015
H)He	3×10^4 /cm ³	LADEE NMS	Benna et al., 2015
Ne	3×10^4 /cm ³	LADEE NMS	Benna et al., 2015
Energetic H	~20% of incident SW flux	IBEX, Chandrayaan-1 SARA	McComas et al., 2009; Futaana et al., 2012
H ₂	10-50% of incident SW flux	LRO/LAMP	Stern et al., 2013; Hurley et al., 2017
CH ₄	450/cm ³	LADEE NMS	Hodges, 2016
Na	5 x 10 ⁹ /cm ² column	LADEE UVS	Colaprete et al., 2016b
K	$4 \ge 10^8$ /cm ² column	LADEE UVS	Colaprete et al., 2016b
Ti	TBD*	LADEE UVS	Colaprete et al 2016a
Fe	TBD*	LADEE UVS/meteor streams	Colaprete et al 2015
Al	TBD	LADEE UVS	Colaprete et al 2015
Са	TBD*	LADEE UVS/meteor streams	Colaprete et al 2015
Mg	TBD	LADEE UVS	Colaprete et al 2016a
0	TBD*	LADEE UVS/meteor streams	Colaprete et al 2015
OH	TBD*	LADEE UVS/meteor streams	Colaprete et al 2015
H ₂ O	$> 100/cm^{3}$	LADEE NMS/meteor streams	Benna et al 2015b

月からの物質放出

• 希薄な中性大気

- Na, K アルカリ大気の地上観測
- He, Ne, Ar 貴ガスの観測(LADEE)

生成機構

- 1. 光脱離
- 2. 隕石衝突
- 3. 太陽風スパッタリング
- 4. 熱脱離

Ground observation (Potter&Morgan 1998)

放出される月物質から月の情報が得られるか? 放出物質は表面の組成を反映しているのか?

月の表面では物質の供給と放出が行われている

Duke & Hurley, 2016 Science

Linear-electric-field Time-of-flight mass spectrometer

Jan. 2008–Jun. 2009 30–100 km altitude

月面表層から放出する粒子

- 二次イオン初期エネルギー<10eV
- 直ちに太陽風によりピックアップ
- →周回高度まで到達
 - *E* = *V* x *B*(磁場計測が重要)
 - *LE*で加速(広いエネルギー分布)
 - 磁気異常の影響

(a)

Kaguya MAP-PACE-IMA TOF Profile 06-Oct-2008 Total Count

(a)

Kaguya MAP-PACE-IMA TOF Profile 06-Oct-2008 Total Count

放出地点を求めてMAPを作成

放出される月物質から月の情報が得られるか? 放出物質は表面の組成を反映しているのか? 月の表面では物質の供給と放出が行われている

- 貴ガス:He, Ne, Ar
 - 内部からの湧き出し, Th/U放射壊変, 太陽風
- 難揮発性物質: Ca, Mg, Fe, Si
 - 表面組成の情報が得られる

Yokota+ SPS2020 Schaible+2017

- <u>揮発性物質: Na, K, C</u>
 - 月起源物質の保証は小さい

Yokota+2014&2020

- 表面組成の反映は小さい 外部起源物質の寄与を考慮する必要がある
- H2O ····

(Natural) SIMS analyses of small bodies

KAGUYA obs. shows that the lunar materials are evolved composition,

 \rightarrow supporting not capture but giant impact theory

アルカリ粒子の放出は太陽光脱離Photon-stimulated desorption (PSD)が支配的 格子欠陥の先に付着したアルカリ粒子を放出 Madey+1998

月表面物質そのものではなく表面付着物

Yakshinskiy+1999

朝夕非対称な分布

<u>アルカリ粒子 Na, K</u>

KAGUYA Obs. 朝夕非対称な分布 <u>アルカリ粒子 Na, K</u> (a) 5 Na⁺ flux [10⁴ /cm² s] k = 1 4 $\cdots k = 3$ 3 Na+ 2 1 -0-**₽** 0 (b) 5 k = 1K⁺ flux [10⁴ /cm² s] 4 = 2K+ k = 33 2 1 0. 0 0 80 *Yokota et al.* 2014 -80 -20 20 40 -60 -40 0 60

K

*Y*_{i-1} A _{i-1} $\phi_i = -90 + i \times \omega \Delta t$ Y_i:外気圏への放出量 A_i:外気圏粒子の貯蔵量 6 1 (i - 0)

$$A_{i} = \begin{cases} A_{0} & (i = 0) \\ A_{i-1} - Y_{i-1} & (i = 1, 2, \dots, N), \end{cases}$$
$$Y_{i} = \alpha A_{i} \Delta t \times \cos^{k} \phi_{i} \quad (i = 0, 1, \dots, N).$$

Species	Emission Rate α(%/°)	Abundance A _N /A ₀ (%)	Standard Deviation $\sigma(\times 10^3)$
$Na^+ (k = 1)$	0.41	62.3	1.63
(k = 2)	0.68	54.0	2.15
(<i>k</i> = 3)	0.93	48.9	3.38
$K^{+}(k = 1)$	0.50	56.4	4.55
(k = 2)	0.91	44.1	2.68
(<i>k</i> = 3)	1.34	35.7	4.70

Longitude/deg. (SSE)

*Y*_{i-1} A _{i-1} $\phi_i = -90 + i \times \omega \Delta t$ Y_i:外気圏への放出量 A_i:外気圏粒子の貯蔵量 $A_{i} = \begin{cases} A_{0} & (i = 0) \\ A_{i-1} - Y_{i-1} & (i = 1, 2, \dots, N), \end{cases}$

Species	Emission Rate α(%/°)	Abundance $A_N/A_0(\%)$	Standard Deviation $\sigma(\times 10^3)$
$Na^+ (k = 1)$	0.41	62.3	1.63
(k = 2)	0.68	54.0	2.15
(k = 3)	0.93	48.9	3.38
$K^{+}(k = 1)$	0.50	56.4	4.55
(k = 2)	0.91	44.1	2.68
(<i>k</i> = 3)	1.34	35.7	4.70

 $Y_i = \alpha A_i \Delta t \times \cos^k \phi_i \quad (i = 0, 1, \cdots, N).$

タ方のANは翌朝AOにどうやって戻るのか?

<u>アルカリ粒子 Na, K</u>

$$Y_{i}: 外気圏への放出量$$

$$A_{i-1}$$

$$\phi_{i} = -90 + i \times \omega\Delta$$

$$A_{i} = \begin{cases} A_{0} \\ A_{i-1} - Y_{i-1} + C\Delta t \\ (i = 1, 2, \dots, N, N + 1, \dots, 2N) \end{cases}$$

$$Y_{i} = \begin{cases} \alpha A_{i}\Delta t \times \cos^{k} \phi_{i} \ (i = 0, 1, \dots, N) \\ 0 \ (i = N + 1, N + 2, \dots, 2N) \end{cases}$$

Y_{i-1}

$$A_{i} = \begin{cases} A_{0} & (i = 0) \\ A_{i-1} - Y_{i-1} & (i = 1, 2, \dots, N), \end{cases}$$
$$Y_{i} = \alpha A_{i} \Delta t \times \cos^{k} \phi_{i} \quad (i = 0, 1, \dots, N).$$

朝夕非対称な分布

<u>アルカリ粒子 Na, K</u>

 $\phi_i = -90 + i \times \omega \Delta t$

$$A_{i} = \begin{cases} A_{0} & (i = 0) \\ A_{i-1} - Y_{i-1} + C\Delta t & (i = 1, 2, \dots, N, N + 1, \dots, 2N) \end{cases}$$
$$Y_{i} = \begin{cases} \alpha A_{i}\Delta t \times \cos^{k} \phi_{i} & (i = 0, 1, \dots, N) \\ 0 & (i = N + 1, N + 2, \dots, 2N) \end{cases}$$

$$A_{i} = \begin{cases} A_{0} & (i = 0) \\ A_{i-1} - Y_{i-1} & (i = 1, 2, \dots, N), \end{cases}$$
$$Y_{i} = \alpha A_{i} \Delta t \times \cos^{k} \phi_{i} \quad (i = 0, 1, \dots, N)$$

Species	Emission Rate α(%/°)	Abundance A _N /A ₀ (%)	Daily Supply S _{RP3} /A ₀ (%)	Standard Deviation $\sigma(\times 10^3)$
$Na^{+}(k = 1)$	0.58	71.3	57.4	1.96
(k = 2)	0.96	64.6	70.8	2.17
(k = 3)	1.36	60.4	79.2	3.38
$K^{+}(k = 1)$	0.74	65.3	69.4	4.29
(k = 2)	1.30	56.6	86.8	2.71
(<i>k</i> = 3)	1.98	50.2	99.6	4.67
			$S_{\text{RP3}} = \sum_{i=1}^{2N} C =$	$2(A_0 - A_N).$

朝夕非対称な分布

<u>アルカリ粒子 Na, K</u>

供給源は?

$\phi_i = -90 + i \times \omega \Delta t$

~50% of A0 had been depleted.

 \rightarrow A need supply during the night.

$A_{i} = \begin{cases} A_{0} & (i = 0) \\ A_{i-1} - Y_{i-1} + C\Delta t & (i = 1, 2, \dots, N, N + 1, \dots, 2N) \end{cases}$ $Y_{i} = \begin{cases} \alpha A_{i}\Delta t \times \cos^{k} \phi_{i} & (i = 0, 1, \dots, N) \\ 0 & (i = N + 1, N + 2, \dots, 2N) \end{cases}$

$$A_{i} = \begin{cases} A_{0} & (i = 0) \\ A_{i-1} - Y_{i-1} & (i = 1, 2, \dots, N), \end{cases}$$
$$Y_{i} = \alpha A_{i} \Delta t \times \cos^{k} \phi_{i} \quad (i = 0, 1, \dots, N).$$

Species	Emission Rate α(%/°)	Abundance A _N /A ₀ (%)	Daily Supply S _{RP3} /A ₀ (%)	Standard Deviation $\sigma(\times 10^3)$
$Na^{+}(k = 1)$	0.58	71.3	57.4	1.96
(k = 2)	0.96	64.6	70.8	2.17
(k = 3)	1.36	60.4	79.2	3.38
$K^{+}(k = 1)$	0.74	65.3	69.4	4.29
(k = 2)	1.30	56.6	86.8	2.71
(<i>k</i> = 3)	1.98	50.2	99.6	4.67
			$S_{\text{RP3}} = \sum_{k=1}^{2N} C =$	$2(A_0 - A_N).$

i=1

朝夕非対称な分布

<u>アルカリ粒子 Na, K</u>

$\phi_i = -90 + i \times \omega \Delta t$

~50% of A0 had been depleted.

\rightarrow A need supply during the night.

供給源は?

Micrometeoroidからの供給量 6e21-1e22 Na atoms/s Buruno+2007 3e22—5e22 Na atoms/s Cremonese+2013

月面からの放出量: 1.7e23 Na atoms/s 宇宙空間への消失量: 5e22 Na atoms/s Tenishev+2013

$$A_{i} = \begin{cases} A_{0} & (i = 0) \\ A_{i-1} - Y_{i-1} + C\Delta t & (i = 1, 2, \dots, N, N + 1, \dots, 2N) \end{cases}$$
$$Y_{i} = \begin{cases} \alpha A_{i}\Delta t \times \cos^{k} \phi_{i} & (i = 0, 1, \dots, N) \\ 0 & (i = N + 1, N + 2, \dots, 2N) \end{cases}$$

$$A_{i} = \begin{cases} A_{0} & (i = 0) \\ A_{i-1} - Y_{i-1} & (i = 1, 2, \dots, N), \end{cases}$$
$$Y_{i} = \alpha A_{i} \Delta t \times \cos^{k} \phi_{i} \quad (i = 0, 1, \dots, N)$$

Species	Emission Rate α(%/°)	Abundance A _N /A ₀ (%)	Daily Supply S _{RP3} /A ₀ (%)	Standard Deviation $\sigma(\times 10^3)$
$Na^+ (k = 1)$	0.58	71.3	57.4	1.96
(k = 2)	0.96	64.6	70.8	2.17
(k = 3)	1.36	60.4	79.2	3.38
$K^{+}(k = 1)$	0.74	65.3	69.4	4.29
(k = 2)	1.30	56.6	86.8	2.71
(<i>k</i> = 3)	1.98	50.2	99.6	4.67
			$S_{\text{RP3}} = \sum_{i=1}^{2N} C =$	$2(A_0 - A_N).$

揮発性物質の放出と供給

- Na, K
 - ナノメートルの超表層の格子欠陥に付着したものが太陽光により放出
 - 昼間のうちに超表層貯蔵量の50%ほどを放出してしまう
 - Micrometeoroidなどによる供給が定常的に起きている (月深部及び物質内部からの拡散)
- C

揮発性物質の放出と供給

- Na, K
 - ナノメートルの超表層の格子欠陥に付着したものが太陽光により放出
 - 昼間のうちに50%ほどを放出してしまう
 - Micrometeoroidなどによる供給が定常的に起きている (月深部及び物質内部からの拡散)
- C
 - 巨大衝突による月誕生時に全て失われた
 - KAGUYAでは観測 Yokota+2009
 - 火山ガラス中から発見 Wetzel+2015

海(5.1e4±5.4% ions cm-2 s-1) > 高地(4.5e4±2.4% ions cm-2 s-1)

C は月起源か?

磁気異常と反相関

海(5.1e4±5.4% ions cm-2 s-1) > 高地(4.5e4±2.4% ions cm-2 s-1)

Cは月起源か?

太陽風 C⁵⁺, C⁶⁺ 2008-2009 He⁺⁺ 3.4e6 ions cm-2 s-1 He/O and C/O in the solar 83.2 and 0.672 Reisenfeld+2013

2.7e4 ions cm-2 s-1

磁気異常と反相関

海(5.1e4±5.4% ions cm-2 s-1) > 高地(4.5e4±2.4% ions cm-2 s-1)

Cremonese+2013

揮発性物質の放出と供給

- Na, K
 - ナノメートルの超表層の格子欠陥に付着したものが太陽光により放出
 - 昼間のうちに50%ほどを放出してしまう
 - Micrometeoroidなどによる供給が定常的に起きている (月深部及び物質内部からの拡散)
- C
 - 巨大衝突による月誕生時に全て失われた
 - KAGUYAでは観測 Yokota+2009
 - 火山ガラス中から発見 Wetzel+2015
 - KAGUYA観測による放出量は太陽風+Micrometeoroid供給量を上回る Yokota+2020

月起源のCが表面全体から湧き出している う誕生時からCを含有していた

地球型惑星・衛星系での物質の放出と供給

観測により放出・供給量を見積り、それぞれの機構の解明を目指す

地球型惑星・衛星系での物質の放出と供給

観測により放出・供給量を見積り、それぞれの機構の解明を目指す

着陸探査機用質量分析器の開発

月極域探査 トロヤ群小惑星探査OKEANOS

着陸探査機用質量分析器の開発

月極域探査

0.1wt%精度で水(H₂O)の含有量が直接観測可能であること

Pulsed HVPS

Middle

リフレクトロンTOF型

着陸探査機用質量分析器の開発 月極域探査 Incident m=17amu m=18amu particles o 100 10 ibility Abundance 1 lon source' 0.1 le Pu HV 0.01 0.001 le 8.1 8.15 8.2 8.25 TOF(μs) 7.9 7.95 8.05 8.3 8.35 8.4 8

Pulsed HVPS Middle

リフレクトロンTOF型

着陸探査機用質量分析器の開発

トロヤ群小惑星探査OKEANOS

Requirements

For isotopes (H,N,O,C)
Mass resolution: >30,000
m/z: 1 to 30
For molecular formulas
Mass accuracy: 10 ppm
m/z: 10 to 300

isotopes	Accuracy
δD	±100‰
δ ¹⁵ N	±40‰
δ ^{17,18} Ο	±10‰
δ ¹³ C	±10~20‰

High Resolution Mass Spectrometer (HRMS)

MULTUM: multi-turn time-of-flight mass spectrometer

質量分析器: 宇宙プラズマ計測→小型天体探査

Mission	Instruments	2000年	2005年	2010年	2015年	2020年	2025年	2030年
SELENE(KAGUYA)	PACE -							
BepiColombo-MMO(MIO)	MIA, MEA, MSA							
MMS	FPI-DIS x16							
ERG(ARASE)	MEPe&i							
MMX	MSA				_			
月極域探査	Mass							
OKEANOS	HRMS							