火星衛星フォボスとデイモスの 起源と進化の現状理解

Phobos

Ryuki Hyodo (ELSI, Tokyo Tech), Thanks to S. Charnoz (IPGP), H. Genda (ELSI, Tokyo-Tech), K. Kurosawa (Chiba Institut.), T. Nakamura (Tohoku Uni.) and

MMX science team

Related papers: Rosenblatt, Charnoz, ... <u>Hyodo</u>, ... (2016), *Nature Geo*. <u>Hyodo</u> et al. (2017a), *ApJ* <u>Hyodo</u> et al. (2017b), *ApJ* Pignatale, Charnoz, ... <u>Hyodo</u>, ... (2018), *ApJ* <u>Hyodo</u> & Genda (2018), *ApJL* <u>Hyodo</u> et al. (2018), *ApJ*

Deimos

- 1. Dynamical origin and evolution of Martian moons
- 2. Physical & chemical properties of Martian moons
- 3. Recent delivery of Martian material to Martian moons

Dynamical origin and evolution of Martian moons

Phobos and Deimos

Orbits: very circular (e ~ 0) and parallel to the Mars' equatorial plane (I ~ 0). e.g., Rosenblatt (2011) A&A Rev.

Tide: Deimos is migrating outward because of tidal interaction with Mars Phobos is migrating inward, and will break apart or hit on Mars in 30 Mrys. Black & Mittal (2015) Nature Geo.

Spectra: featureless & very dark (similar to D-type asteroids) e.g., Murchie (1999) JGR

Two Leading Hypothesis

MMX is a JAXA's sample return mission to Martian moons Primary goal of *MMX* mission is to solve moons' origin

supported by spectral features

supported by orbital elements

impact

衛星形成

Dark & Featureless: D-tyep?

Circular & Equatorial

Impact Origin?

Giant impact hypothesis for Moon

- If this happens on Mars, satellites with e ~ 0 and I ~ 0 may be naturally formed.
- Phobos and Deimos are small.
 Small impactor is sufficient

Craddock (2011) proposed the impact which made <u>northern lowlands</u> on Mars (Borealis basin) may create Martian moons.

Marinova et al. (2008) showed the impact condition to form the Borealis basin -> we use the same impact conditions to form Martian moons

Topography of Mars

Borealis Basin-forming Impact

Marinova et al. (2008) Nature

Sweet Spot

Impactor mass : 3% of M_{Mars} Impact velocity : ~ 6 km/sImpact angle: ~ 45 deg

Inner Massive and Outer Light Disk

Accretion in Outer Light Disk

10 myr

50 myr

✓ More than 2 satellites (typically ~ 5) are formed, because the system is NOT enough dynamically excited.

We need a trick which can enhance or force the accretion of satellites in the outer disk.

Formation of Big Moons from Inner Massive Disk

- ✓ From massive inner disk (10,000 × Phobos), a huge satellite (~ 1000 x Phobos) can be formed.
- ✓ This huge satellite moves outward up to $4.4R_{\text{mars}}$ due to the gravitational interaction with the disk.

•

4 billion years ago...

Rosenblatt, Charnoz, ..., Hvodo, Genda et al. 2016, Nature Geo.

Creations and Destructions of Phobos?

Physical & chemical properties of Martian moons

High-Resolution SPH Simulations

Conditions:

- $N_{\rm SPH} = 3 \times 10^6$
- M-ANEOS
- θ_{imp} =45degs
- $V_{imp}=6$ km/s
- $m_{\rm imp}=0.03 M_{\rm Mars}$

Outcome: • M_{disk} =5×10²⁰kg

<u>Hyodo</u>, et al. (2017) ApJ

Debris just after the Ginat Impact

<u>*Hyodo*</u>, et al. (2017) ApJ

Giant impact by Vesta-to-Ceres impactor?

Physical, thermodynamical & compositional properties are similar to Hyodo et al. 2017

Building Blocks

Phobos and Deimos contain Martian mantle materials

Hyodo, et al. (2017) ApJ

Thermal and Physical Aspects

disk's temperature

disk materials: almost fully molten low vapor fraction (< 5%) particle sizes: Melosh & Vickery (19991) Nature melt fragmentation: $\sim 1 \text{ m}$ vapor condensation: $\sim 0.1 \mu m$ very dark (FeS, C) featureless Pignatale, ..., <u>Hyodo</u> (2018) ApJ Ronnet et al. (2016) ApJ space-weathered Anorthosite Yamamoto et al. (2018), GRL disk evolution:

further fragmentation from $\sim 1 \text{ m}$ to 100 μm

Hvodo, et al. (2017)

Chemistry in the Disk

Dust Chemistry depends on impactor

Volatile Loss from Building Blocks

Hydrodynamic Escape & Radiation Pressure may remove volatiles?

Outer parts of the building blocks: Opacity tau < 1 (yellow points)

Hvodo, et al. An.I submitted

Volatile Loss from Disk

$$\lambda_{esc} = \frac{GM_{Mars}m_{vap}}{kT_{vap}r}$$

M_{Mars}: Mars mass, m_{vap}: mean molecular weight of vapor, k: the Boltzmann constant, T_{vap}: vapor temperature, r: distance to Mars

Distribution of the Debris within the Inner Solar System

Hyodo, & Genda ApJL 2018

Distibution of Impact Debris within the inner Solar System

- Impacting asteroids would reset ⁴⁰Ar-³⁹Ar age and/or cause impact melts
- Unmelted Martian mantle debris (~0.02% of M_{Mars}) can be the source of
 - ☆ Martian Trojan (Olivin-rich)
 - **Rare A-type asteroids (Olivin-rich) in Hungarian and Main belt**

Hyodo, & Genda ApJL 2018

⁴⁰Ar-³⁹Ar Resetting Age Distribution

Bottke et al. 2015. Science

Take Home Message

A giant impact on Mars can

- produce Phobos and Deimos (Rosenblatt, ... Hyodo et al. 2016)
- create the Borealis basin (Marinova et al. 2008, Hyodo, et al. 2017b)
- ▶ produce the current Mar's spin period (Hyodo, et al. 2017b)
- distribute debris as Martian Trojan & A-type asteroids (Hyodo, & Genda 2018, ApJL)

Building blocks of Phobos and Deimos:

► Mixture of impactor's and <u>Martian materials</u> *crust & mantle* (<u>Hyodo</u>, et al. 2017a)

► Mixture of <u>0.1 µm</u> and 100 µm – 1 m sized particles *Featureless & maybe dark (FeS, C) (Pignatale, ... Hyodo et al. 2018)*

► Volatile loss is limited (<u>Hyodo</u>, et al. ApJ submitted)

Summary (Expected Phobos & Deimos)

Bulk composition (rubble-pile object):

- \sim 50% Martian material (at the time of impact: \sim 4 Gyr ago)
 - ◆ Martian crust and mantle (up to150km in depth)
- $\sim 50\%$ impactor material
- Particle size: 100µm-10m
- Volatile element would be depleted
- Aqueous alteration may recorded

Impactor material

Martian material

In the regolith

• Dust condensed from the vapor produced by giant impact

Regolith

- Recently delivered material
 - ♦ Martian surface material
 - \ast ~150 ppm delivered within recent 10 Myr
 - $* \sim 1500$ ppm delivered within recent 500 Myr
 - Impactor material