あかり衛星によるトリトンとエリスの観測

- トリトンの近赤外分光/エリスの遠赤外撮像観測
- 氷の国から 北海道教育大学
- 冥王星は大彗星か?
- 彗星はどれくらい彗星っぽいか?
- 冥王星とTNOs
- 冥王星と小天体の大きさ測定

Triton Spectrum with AKARI/IRC

Burgdorf, Cruikshank, Dalle Ore, Sekiguchi, Nakamura, Orton, Quirico & Schmitt (APJL 2010)

A Tentative Identification of HCN Ice on Triton

外縁低温天体の熱放射観測: サイズ&アルベドの導出

あかり FIS(遠赤外線サーベイ観測装置) <u>観測天体:16天体</u>

ケンタウルス天体 (4天体)

Chiron, Chariklo, Thereus, 2003 CO1

- 準惑星(候補)TNOs (3天体) Eris, Haumea, Makemake
- 散乱TNOs (2天体)
 Sedna, 2005 RN43

他のTNOs (7天体) Huya (2000 EB173), Orcus (2004 DW), 2002 TX300, 2002 UX25, 2004 GV6, 2005 RM43, 2005 RR43

Centaurs の中間赤外線(IRC: 15µm, 24µm)観測

(1) 氷天体 冥王星:辺境の地

氷の世界: 旭川

地方の単科大学 北海道教育大学 _{旭川校}

前期担当科目

私の担当科目

- 1) 地学概論 :基礎天文学/1年生
- 2) 地学基礎実験 :実験(ケプラー、分光、HR図、星座早見盤)/2年生
- 3) 中学校理科実験 I:中学校で行う実験(分担 1/8)/3年生
- 4) 理科教材開発実習:教材開発(分担)/4年生
- 5) 現代と科学:教養科目(分担 1/3)/2年生
- 6) 地学演習:4年生卒論セミナー/4年生
- 7) 地学実験 I:研究室セミナー/1年生~4年生
- 8) 教育フィールド研究1: ボランティア養成
- 9) 天体物理学特論 I:大学院科目

後期担当科目

- 1) 天体物理学 : 天文学/3年生
- 2) 地学基礎実験 :実験(ケプラー、分光、HR図、星座早見盤)/2年生
- 3) 初等理科 (分担 1/15) /2年生
- 4) 小学校理科(分担 1/15)/2年生
- 5) 理科教材開発研究(分担 2/15)/3年生
- 6) 教職実践演習
- 7) 中学校理科実験 II : 理科教育実験/3年生
- 8) 地学実験 II: 卒論セミナー/4年生
- 9) 天体物理学特論 II: 大学院科目

1)集中講義 地学野外実習 : 流星観測(宿泊集中講義)/2年生
*)教員免許状更新講習 隔年(旭川/北見) 現職教員

冥王星は彗星っぽいか?

もし、太陽系の内側に落っこちて来たら、とんでもない大彗星になるはず...

Frozen nitrogen

Water ice

-Rock

モノとしては彗星っぽい

NASA NewHorizons web page

冥王星は彗星コマを持つ?

Top of atmosphere

a=39.4 au q= 29.6 au

昇華ガスによるコマ(大気)

NASA NewHorizons web page

Earth

冥王星は彗星はイオンの尾を持つ?

太陽風と反応するプラズマテイル(状の磁気圏)

NASA NewHorizons web page

小惑星は岩の塊?

Dirty Snowball ??

1980年式 Chevrolet Malibuに落ちた隕石 ニューヨーク州ピークスキル 1992, 10, 9

小天体: 彗星と小惑星の違いは?

・彗星とは:太陽系の外側、カイパーベルトやオールト雲から やって来る氷(揮発性物質)の小天体 ・小惑星とは:火星と木星の間のメインベルトにあるものや 一部は地球に近づく、岩石(ケイ酸塩鉱物)小天体

NO !?

彗星と小惑星の境目がなくなって来た

彗星の定義は「ボヤッと見えたら(あるいは尾が見えたら) 彗星」、 一方で、「点光源の小天体なら小惑星」 つまり、力学的(軌道)でも物質科学的な定義でもなく、 ただ"姿、見え方"である

コマが見えたら彗星

背景の恒星は彗星の運動に 合わせて移動

Comet 29P/Schwassmann-Wachmann Remotely through the "Liverpool" Rc 2.0-m, f/10 Ritchey-Chretien reflecto N. Howes, E. Guido and G. Sostero

Hsieh (2004)

O

小惑星とは

点光源として観測される小天体が小惑星

(彗星コマやダストの尾・プラズマの尾がなければ) ぼんやりとして見えなければ、あるいは尾が見えなければ <u>点光源: 小惑星</u>

(8660) Sano

小惑星帯(火星と木星の間)

メインベルトの中で彗星活動をする天体 子 彗星

Themis族 (Collision- Family)

133P/Elst-Pizarro

P/2005 U1 (Read)

118401 (1999 RE70)

2002年は彗星 (UH-2.2m) 2003年は小惑星 (Keck-10m)

(7968) 1996 N2 133P/ Elst-Pizarro

尾が見えたので彗星 ← 衝突起源か?

NASA, ESA, and D. Jewitt (UCLA)

STScI-PRC10-07

CURRENTLY KNOWN DAMOULOIDS

Jewitt (AJ, 2005)

ダモクロイド	a^{a}		i	q^{d}	7
Name	(AU)	e ^b	(deg) ^c	(ÂU)	$T_{\rm J}^{\rm e}$
20461 Dioretsa (1999 LD31)	23.777	0.900	160.4	2.390	-1.542
2000 HE46	23.985	0.902	158.38	2.355	-1.508
1999 LE ₃₁	8.163	0.472	151.88	4.310	-1.310
C/LINEAR (2002 CE10) ^f	9.816	0.791	145.46	2.047	-0.853
(65407) 2002 RP ₁₂₀	55.940	0.956	119.11	2.473	-0.845
2000 DG ₈	10.786	0.793	129.43	2.231	-0.631
C/LONEOS (2001 OG108)f	13.30	0.925	80.26	0.994	0.597
2000 AB ₂₂₉	52.497	0.956	68.72	2.292	0.773
1997 MD ₁₀	26.740	0.942	59.04	1.543	0.975
C/LINEAR (2002 VQ 94)f	218.161	0.969	70.50	6.800	1.095
5335 Damocles (1991 DA)	11.834	0.867	62.10	1.573	1.143
2002 XU93	67.426	0.689	77.88	20.983	1.173
1998 WU ₂₄	15.221	0.907	42.56	1.419	1.404
1999 XS35	18.079	0.948	19.47	0.948	1.411
2000 KP65	88.323	0.963	45.62	3.274	1.613
1996 PW	287.127	0.991	29.76	2.547	1.732
2003 WG ₁₆₆	5.160	0.644	55.41	1.838	1.873
2003 WN ₁₈₈	14.566	0.849	26.94	2.200	1.933
(15504) 1999 RG13	9.634	0.775	35.13	2.164	1.946
2004 DA ₆₂	7.709	0.467	52.23	4.107	1.993

Nore.—As of 2004 July 1. Objects are ordered by Tisserand parameter,

特異小惑星 2002 CE10 (Aug. 22, 2003, r=2.1AU)

彗星像と恒星像のPSF比較

PSFは一致 → 彗星状ではない

Subaru Suprime-cam: Takato et al.

逆行TNO → Scattered TNO? Inner Oort Cloud?

Aphelion:Q=70.6 AUPerihelion:q=20.3 AUEccentricity:e=0.553Inclination:i=103.503°

Dirty Snowball !!

Fred Whipple (1906 - 2004)

彗星の素顔

探査機

1P/ Halley - Giotto他 (1986) 19P/Borrelly- Deep Space 1 (2001) 81P/Wild 2 - Stardust (2004) 9P/Tempel 1 - Deep Impact (2005) 103P/Hartley 2 - EPOXI (2010) 67P/Churyumov-Gerasimenko - ROSETTA (2015)

1P/Halley (1986) C/1996B2 Hyakutake (1996) C/199501 Hale-Bopp (1997)

1P/ Halley Giotto (1986) 19P/Borrelly Deep Space 1 (2001)

103P/Hartley 2 EPOXI (2010)

81P/Wild 2 Stardust (2004) 9P/Tempel 1 Deep Impact (2005)

ROSETTA & 67P

→ COMET 67P/CHURYUMOV-GERASIMENKO'S VITAL STATISTICS

4.1 km

D/H ratio

0-

大きさ

2.6 km

2.3 km

1.8 km

体積と密度

1.0 × 1013 kg

470 kg/m³

70-80%

21.4 km³

Volume

Mass

Density

Porosity

Rotation period 12.4043 hours

eesa

Spin axis:

69.3° Right Ascension

64.1° Declination

52° Obliquity of the comet's rotational axis

温度 -93°C to -43°C -243°C to -113°C

6%

Ion mar: MIRO; D/H: ROSINA WIRTIS TON THE GIADA MIRD et images: NavCam

Titan tholin? Triton tholin? Ultra Red Matter??

https://briankoberlein.com/2015/09/21/what-are-tholins/

http://www2.ess.ucla.edu/~jewitt/comet.html

TO

T1

そうは言っても

彗星は彗星活動している

彗星核の表面

Meech & Svoren (2004) from COMETS II

(これまでは「明確な活動領域がある割合で表面に存在」と思っていた)

揮発性物質は表面下(と表面の小さな穴ボコ)から昇華

The pits were identified in OSIRIS images taken August-October 2014.

彗星核からの揮発性物質の昇華

ガスは、表面下(と表面の穴ボコ)から吹き出している

彗星は Dirty Snowball か?

表面に氷の露出もあるにはある…が

彗星は Dirty Snowball か? 表面に氷の露出もある…が

DawnによるCeresの撮像

直径: 952.4 km アルベド ~0.09 スペクトル型: G型 (C型)

Ceresは小惑星(岩石天体)か?

内部活動(地質活動)がある → 中は凍ってないところもあるのか!?

O NASA JPL-Catech/UCLA/NPS/DLR IDA

内部にはH2Oがありそう

固体のH2Oが存在していそう 液体まであるのか

Ceres' layers

Thin, dusty outer crust

Water-ice layer

Rocky inner core

小惑星として小惑星番号 134340 が付与されている

他の衛星と冥王星大きさ比べ

海王星の衛星 トリトン 海王星の重力に捕らえられた かつてTNO?

> 直径2000km以上の衛星では唯一 逆行軌道で惑星の周りを公転する衛星

Triton's Plume (Voyager 2, NASA)

Triton (D~2700km): the biggest TNO?

plume activity

retrograde orbit: captured satellite originally from Kuiper Belt Surface: covered with Interior material

Pluto & Triton: VLT

Figure 1: Pluto's spectrum in the range of wavelengths $1-5 \mu m$. The species responsible for the absorption bands detected in our spectrum are marked in the figure. No object flux is measured in the atmospheric absorption bands at 2.5–2.8 and 4.1–4.4 μm .

Pluto's near-IR spectrum

メタンの吸収 Triton's near-IR spectrum

Figure 2: Triton's spectrum in the range of wavelengths $1-5 \mu m$. The species responsible for the absorption bands detected in our spectrum are marked in the figure. No object flux is measured in the atmospheric absorption bands at 2.6–2.8 and 4.1–4.4 μm .

Protopapa et al. (2007)

Triton spectrum with AKARI/IRC

カッシーニ探査機による土星の氷衛星Iapetusの観測

Pluto ~ TNOsの中でも最大級のもの

準惑星エリスの近赤外線スペクトル (Keck)

TNOsは D型小惑星より赤いものも

ハーシェル宇宙望遠鏡によるTNOsのサイズとアルベド

(70, 100, 160, 250, 350, 500 µm 遠赤外線)

遠赤外線衛星 ハーシェル宇宙望遠鏡

Herschel Space

Observatory:

打上げ 2009年5月14日 運用終了 2013年4月29日

望遠鏡口径 3.5m

ラグランジュL2軌道 観測波長60-670 μm

<u>最大の宇宙望遠鏡</u> 「あかり」と Herschel

「のかり」と Hersche 0.67m 3.5m 集光力 ~30倍

eesa

Exploring the formation of Galaxies and Stars

European Space, Agency gence Spatiale Européenne SPACE OBSERVATORY HERSCHEL

土星の衛星エンケラドスは彗星か?

地質活動(ガス噴出)をする小型(500km)衛星 H2Oが気相・液相・固相で存在する アルベドは90%を超える! → まさに新雪

エンケラドスが一番彗星っぽいんじゃ??

エンケラドスが一番彗星っぽいんじゃ??

アルベド > 0.9 ピカピカの表面

<u> 冥王星のサイズ見積もり:Before & After New Horizons</u>

- HST imaging Stellar Occultations Speckle interferometry = 1350~1730 km (1987) Charon Mutual Event = 1178 ± 23 km (1994)
- $= 1160 \pm 12 \text{ km} (1994)$
 - $= 1180 \pm 5 \text{ km} (1993)$

New Horizons =1185 km

NASA, ESA, and M. Brown (Caltech)

STScI-PRC06-16b

小惑星のサイズ測定:「赤外線」観測と「探査機」の答え合わせ

小惑星 (観測:直径)

ガスプラ (IRAS:16km)

イダ (IRAS: 33km)

マチルダ (IRAS: 61km)

エロス (UKIRT: 24km)

シンプルSTM: traditional Standard Thermal Model

Mathilde

Eros

50 km

Gaspra

da

エネルギーバランス

中間赤外線観測 熱放射の観測 25143 Itokawa 10 Observation time: 2004/07/02 Heliocentric distance: 1.035 [AV] predicted flux density [Jy] Geocentric distance : 0.026 [AU] Apparent Y Magnitude: 19.4 [mag.] 中間赤外線 ▶ 熱放射 0.1 0.01 **可**視 ・近赤外 太陽光反射成分 0.001 10 100 wavelength [µm]

Itokawaのサイズとアルベドの導出

TPM: ThermoPhysical Model of 951 Gaspra

- •回転軸、回転ベクトルと自転周期
- •表層の熱伝導特性(1次元熱伝導、熱慣性、二次元分布)

Itokawa の ThermoPhysical Model

太陽光入射フラックス

入射光と自転に対する温度分布

Mueller, Sekiguchi et al., A&A, 2005

Time [hours], Start time: 01-Jul-2004 00:03:00 UT

30

Imaging by Hayabusa Spacedraft

http://www.jaxa.jp/press/2005/09/20050914_hayabusa_j.html

JAXA / ISAS

Hayabusa: 540x270x210m

our study :520x270x230m (+/-50) (+/-30) (+/-20)

Mueller and Sekiguchi et al. (2005, A&A)

熱慣性値 (Γ = √ κρc_P)の導出

Tempel 彗星の彗星核の熱慣性値 \rightarrow 0 ~ 10 [Jm⁻²s^{-0.5}K⁻¹] Groussin et al. 2007

Deep Impact探査機

・レゴリス小惑星 「=10-15 (Mueller et al.1999)

・月 「=39 (Keihm 1984)

•Itokawa
Γ=750
(Mueller, Sekiguchi
et al.2005)

·金属質 「=10000 (Mueller et al.2005)

熱慣性:J m⁻² s^{-0.5} K⁻¹

人類の偉大なる一歩から読み取る月のレゴリス

"That's one small step for a man, one giant leap for mankind. " Neil Alden Armstrong

 ・表面の土砂の空隙率や砂利の粒径を推定 はやぶさ2のTIR (Thermal InfraRed Imager) を念頭したサイエンスへ
熱慣性 vs. 表層物理状態

<mark>熱慣性:</mark> Γ [J m ⁻² s- ^{0.5} K ⁻¹]	表層物理状態
~ 10	超高空隙率の微細粒(~80%)?, セレス、火星の砂
~ 50	微細粒: 月レゴリス (粒径 50~100 µm)
100 ~ 200	砂(d~mm): 433Eros
200 ~ 400	砂利 (d ~cm): 25143Itokawa's Muses-Sea Regio
400 ~ 1000	岩片、岩石破片 (d < m): Itokawa's rough terrain
1000 ~ 2000	多孔質岩石
2000 ~	稠密な岩石

はやぶさ2 赤外線カメラ(TIR)の目的

25143 Itokawa	433 Eros	The moon	1 Ceres
$\Gamma = 600$	$\Gamma = 150$	Γ = 50	$\Gamma = 10$
Release 051101-4 ISASUAXA			
Coarse regolith	Finer and thicker	Mature and	Very fine
and boulders	regolith	fine regolith	regolith ??

TIRの仕様緒元

開発コンセプト

- ・小惑星サーモグラフィ:広い温度範囲
- ・非冷却ボロメータ使用:小型軽量化
- ・「あかつき」LIRと同設計:短期開発
- ・積算:M=1枚/60秒×2^m枚(m=0~7)
 N=2ⁿ枚(n=0~7枚)

Table. Specifications of TIR (at EOL)

Mass	3280g
Power	22W
Detector	NEC 320 bolometer (AR coating)
Wavelength	8-12µm
FOV	16° × 12°
IFOV	0.877mrad = 0.05°
Detection range	250-400K
Pixel numbers	344 × 260 (effective 320 x 240)
Temp. resolution	< 0.5K (@350K), < 0.6K (@250K)
Abs. temp accuracy	< 5K (@350K), < 6K (@250K)
Ge Lens F-value	1.4
MTF (@nyquist freq)	>0.3
A/D Conversion	12 bit

TIRによる風景写真(相模原市)

くデジカメン

★天体自転に伴う温度変化と熱慣性

はやぶさ2 赤外線カメラ(TIR): 熱慣性値

心距離1AU, 自転軸傾斜角0度の場合の, 赤道での温度変化).

赤外線衛星: あかり (ASTRO-F) と スピッツァー (SST)

IRAS(Infrared Astronomy Satellite)衛星

1983年にアメリカ、イギリス、オランダによって打ち上げ。 世界初の赤外線天文衛星(口径57cm)。 赤外線全天図・彗星の発見・小惑星のサイズとアルベド

掃天(サーベイ)型 (→現代版IRAS)

あかり (ASTRO-F) (ISAS/JAXA)

打ち上げ:2006年2月22日 MV-8

口径 68cm

近一中間赤外:1.8~26µm

のカタログを作成

遠赤外:65μm,90μm,149μm,161μm

天文台型(ポインティング)

Spitzer S. Tel. (NASA) 打ち上げ:2003年 8月25日 口径85cm 近ー中間赤外: 3.8~24µm 遠赤外:70µm, 160µm

