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周太陽軌道から衛星軌道へ	


(1) 周太陽軌道	
  
– 小惑星、彗星、トロヤ群	
  

(1.5)	
  準衛星軌道（一時捕獲） 	
  
– 一時捕獲軌道をはさむと、(1)から
(2)へ移行する際のエネルギー散
逸が少なくてすむ	
  

(2)	
  周惑星軌道	
  
–  大きな楕円軌道、順行/逆行	
  

(3)	
  現在の衛星軌道	
  
–  フォボス・ダイモスの場合は円軌

道化と軌道傾斜角進化が大問題	
  



周太陽軌道と周惑星軌道	
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rH = ap(mp/3M!)1/3, where ap and mp are the semimajor axis and mass of the planet and

M! is the Solar mass.

Additionally, we set two other conditions to make the derivation simple: we assume

that the position of the body at the moment of transition from heliocentric motion to

planetocentric motion, which means the L1 or L2 point, is the apocenter or pericenter on

the planetocentric orbit (condition [3]). An apocenter at L1 or L2 is corresponding to a

planetocentric orbit within rHill from the planet. The temporary capture does not always

start with such a tightly bound orbit, so we allow us to relax the condition to having an

apocenter or pericenter at L1 or L2. Condition [3], which gives the relative radial velocity

is 0, leads to the condition that the body has the aphelion or perihelion on the heliocentric

orbit at L1 or L2 (condition [4]). The condition [3] is not always a good approximation,

because gravitational pull from the planet causes velocity component radial to the planet.

But, the condition [4] is usually a good approximation, so that the condition [3] is necessary

for the identification between heliocentric and planetocentric motions.

2.1.2. Conditions for Temporary Capture

We consider a body and a planet in the rotating Cartesian coordinates (x, y, z)

centered on the Sun. The x-axis is chosen as parallel to the position vector of a planet from

the Sun and the x-y plane agrees with the planet’s orbital plane.

The heliocentric velocity of the body (an asteroid) for the heliocentric distance r is

v =

√

GM!

(
2

r
− 1

a

)
, (1)

where G is the gravitational constant, M! is the Solar mass, and a is the heliocentric

semimajor axis of the body. Using Equation (1) and conditions [2] and [4], we obtain the
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velocity at the orbit transition from heliocentric to planetocentric orbit as

v =

√

GM!

(
2

A∓ap
− 1

a

)
, (2)





A− = 1− r̂H at L1

A+ = 1 + r̂H at L2,
(3)

where r̂H = rH/ap.

From the condition [4], the velocity vector is written as (vx, vy, vz) = (0, v cos i, v sin i)

where i is the heliocentric orbital inclination of the body measured from the orbital plane of

the planet. The planet has the heliocentric velocity vp = (0, vp, 0) where vp =
√
GM!/ap.

The velocity of the body (a satellite) orbiting around the planet is written as

vs =

√

Gmp

(
2

rs
− 1

as

)
, (4)

where rs and as are the planetocentric distance and semimajor axis of the body. From

conditions [3] and [4],

rs = as(1± es) = rH, (5)

where es is the eccentricity of the body in the planetocentric orbit (satellite eccentricity).

The ± sign in Equation(5) is ′′+′′ for the body at apocenter and ′′−′′ for the body at

pericenter.

Substituing Equation (5) into Equation (4), we obtain

vs = vp

√
mp

M!

κ

r̂H
, (6)





κ = 1− es at planecentric apocenter

κ = 1 + es at planecentric pericenter.
(7)

r:	
  日心距離	
  
a:	
  軌道長半径	
  
速度 v:	
  	


r	


惑星のケプラー速度 vp	
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



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rs:	
  惑星からの距離	
  
as:	
  衛星としての軌道長半径	
  
衛星としての速度 vs:	
  	


rs	




一時捕獲の条件（仮定）	


ヒル圏	


L1	
 L2	


(1)	
  L1	
  点か L2点において、惑星に対する相対速度が、衛星に
ふさわしい速度である(＝相対速度がじゅうぶん小さい)。	
  

(2)	
  その場所が、周太陽軌道の遠日点または近日点である。	
  
(3)	
  かつ周惑星軌道の遠点または近点である。	
  

この3条件を満たす軌道要素の関係を解析的に導く	




捕獲は2^3=8通り	




捕獲の方程式の導出	
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where B± is defined by Equation (10) and C∓ and D∓ are defined by Equations (13) and

(14), respectively. For example, for mp = 9.55 × 10−4M# and ap = 5.2AU, r̂H = 0.068

and C−ap = 3.6 AU, C+ap = 4.4 AU, B−ap = 4.5 AU, B+ap = 6.0 AU, D−ap = 6.6 AU,

and D+ap = 10.2 AU. Therefore, whether prograde or retrograde capture is dominated

clearly depends on the heliocentric semimajor axis of the captured body. The ratio of

prograde capture to retrograde capture in the ranges of 2) and 4) is determined by the

ratio of capture via L1 to that via L2, depending on the distributions of heliocentric orbital

elements of asteroids.

2.3. Heliocentric Orbital Elements for Temporary Capture -General case

2.3.1. Generalized Condition for Temporary Capture

Now we extend the discussions in section 2.2 to general case including inclined

(asteroidal) orbits. The relative velocity of the body to the planet with heliocentric orbital

inclination i is written as

vrel =
[
v2x + (vy − vp)

2 + v2z
] 1

2

= vp

[(
2

A∓
− ap

a

)
+ 1− 2

√
2

A∓
− ap

a
cos i

] 1
2

(18)

With |vrel| = vs, we obtain the equation of temporary capture as follows:

∆2 − 2∆ cos i+ 1− 3κr̂2H = 0, (19)

∆ =

√
2

A∓
− ap

a
. (20)

Equation (19) gives the relation between the heliocentric orbital elements before the

capture (a, i) and the planetocentric orbital element at the moment of capture (as, es, is).

Equation (19) also gives the ranges of these orbital parameters that satisfy the conditions
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周太陽軌道の a,	
  e,	
  i	
  ó	
  衛星軌道の as,	
  es,	
  is	


粒子と惑星の相対速度	


衛星の軌道速度	


(1)	


(2)	


式(1),	
  (2)をイコールでつないで、	
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a-­‐i	
  平面上で捕獲条件を満たす領域	
  	
  
(木星の場合)	
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Fig. 1.— Solution to Equation (19) on the a− i plane for various es for Qs and qs.

L1	
 L2	


“離心率=1の近点での
捕獲(オレンジ)”までの
捕獲を考えると、捕獲
が起こるための周太
陽軌道の	
  
•  軌道傾斜角の上限

は9.6度	
  
•  軌道長半径の範囲

は3.5-­‐10.2AU	
  
となる。	
  

3.5-­‐6.6	
  AU	
  
for	
  L1	
  capture	


4.3-­‐10.2	
  AU	
  for	
  L2	
  capture	


9.6	
  deg	




元の軌道長半径と衛星軌道傾斜角の関係	
  
(木星の場合)	
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Fig. 3.— Relation between is and a from Equation (27) for various i. The region between

the two crosses on each curve is for Qs capture.
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•  衛星軌道傾斜角は0-­‐180度の範囲に広がる 	
  
•  L1	
  捕獲では    a<~4.5	
  AU:	
  順行	
  

	
   	
   	
   	
  　　a>~4.5	
  AU:	
  逆行	
  
•  L2	
  捕獲では,	
  	
  	
  	
  a<~5.9	
  AU:	
  逆行	
  

	
   	
   	
   	
   	
  a>~5.9	
  AU:	
  順行	
  

逆行不規則衛星はトロヤ群天体(と起源
を同じくする天体)が捕獲されたものか	




数値計算との比較	
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Fig. 4.— Top: is− distribution analytically obtained from Equtaions (19) and (27) assuming

uniform distribution on a − i plane for various a. Bottom: is− distribution obtained from

the numerical calculation for various atc.
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•  解析解を使って生成した
衛星軌道傾斜角の分布
(元の軌道長半径別)	
  

•  数値計算(制限3体問題)で
生成した上図と同じ分布	
  

ピークの場所の並びともとの軌道
長半径の関係が見事に一致　	
  
-­‐>	
  解析解の導出においた仮定は
妥当と考えられる	
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Planet ap[AU] mp[M!] imax[deg] L1/L2 amin [AU] a90 [AU] amax [AU] Tmin Tmax

Mercury 0.387 1.66e-07 0.5348 L1 0.3771 0.384062 0.3913 2.99987 3.00004

L2 0.3828 0.389961 0.3975 2.99987 3.00004

Venus 0.723 2.45e-06 1.312 L1 0.6794 0.709609 0.7434 2.99922 3.00026

L2 0.7042 0.736644 0.7731 2.99922 3.00026

Earth 1 3.00e-06 1.404 L1 0.9358 0.980198 1.03 2.99911 3.0003

L2 0.9722 1.0202 1.075 2.99911 3.0003

Mars 1.52 3.72e-07 0.6999 L1 1.47 1.50492 1.542 2.99978 3.00007

L2 1.498 1.53524 1.574 2.99978 3.00007

Jupiter 5.2 9.55e-04 9.628 L1 3.579 4.53527 6.632 2.95919 3.01467

L2 4.412 5.96215 10.2 2.95792 3.01339

Saturn 9.55 2.86e-04 6.425 L1 7.307 8.71559 11.11 2.98163 3.00646

L2 8.497 10.4643 14.12 2.98125 3.00608

Uranus 19.2 4.37e-05 3.43 L1 16.46 18.2845 20.72 2.99472 3.00182

L2 17.97 20.1613 23.16 2.99466 3.00176

Neptune 30.1 5.15e-05 3.623 L1 25.61 28.5861 32.63 2.99411 3.00203

L2 28.08 31.6941 36.74 2.99404 3.00196

Table 1: Ranges of i, a, and T from Equation(19) and a90 from Equation (28) for 8 planets.

＊捕獲が起こりうる軌道要素　(円軌道を仮定した8惑星について)	


T:	
  ティスランパラメタ	



