衛星の捕獲: 周太陽軌道から周惑星軌道への移行

submitted to AJ

樋口有理可¹ 井田茂²
1東京工業大学理工学研究科
2東京工業大学地球生命研究所

周太陽軌道から衛星軌道へ

(1) 周太陽軌道 – <u>小惑星、彗星、トロヤ</u>群

(1.5) 準衛星軌道(一時捕獲) - 一時捕獲軌道をはさむと、(1)から (2)へ移行する際のエネルギー散 逸が少なくてすむ

(2) 周惑星軌道

- 大きな楕円軌道、順行/逆行

(3) 現在の衛星軌道

フォボス・ダイモスの場合は円軌
 道化と軌道傾斜角進化が大問題

*

₩

周太陽軌道と周惑星軌道

r_s: 惑星からの距離 a_s: 衛星としての軌道長半径 衛星としての速度 v_s:

$$v_{\rm s} = \sqrt{Gm_p \left(\frac{2}{r_{\rm s}} - \frac{1}{a_{\rm s}}\right)}$$

 L_1

L₂

ヒル圏

0 0

(1) <u>L, 点か L, 点</u>において、惑星に対する相対速度が、衛星に ふさわしい速度である(=相対速度がじゅうぶん小さい)。

(2) その場所が、周太陽軌道の<u>遠日点または近日点</u>である。
 (3) かつ周惑星軌道の<u>遠点または近点</u>である。

この3条件を満たす軌道要素の関係を解析的に導く

捕獲の方程式の導出

粒子と惑星の相対速度

$$v_{\rm rel} = \left[v_x^2 + (v_y - v_{\rm p})^2 + v_z^2 \right]^{\frac{1}{2}} = v_{\rm p} \left[\left(\frac{2}{A_{\mp}} - \frac{a_{\rm p}}{a} \right) + 1 - 2\sqrt{\frac{2}{A_{\mp}} - \frac{a_{\rm p}}{a}} \cos i \right]^{\frac{1}{2}}$$
(1)

$$\begin{cases} A_{-} = 1 - \hat{r}_{\rm H} \text{ at } L_1 \\ A_{+} = 1 + \hat{r}_{\rm H} \text{ at } L_2, \\ \hat{r}_{\rm H} = r_{\rm H}/a_{\rm p} \\ r_{\rm H} = a_{\rm p} (m_{\rm p}/3M_{\odot})^{1/3} \end{cases}$$

衛星の軌道速度

$$v_{\rm s} = \sqrt{Gm_p\left(rac{2}{r_{\rm s}}-rac{1}{a_{\rm s}}
ight)}$$
 (2)

式(1), (2)をイコールでつないで、

$$\Delta^2 - 2\Delta \cos i + 1 - 3\kappa \hat{r}_{\rm H}^2 = 0,$$

 $\Delta = \sqrt{\frac{2}{A_{\mp}} - \frac{a_{\rm p}}{a}}.$

$$\begin{pmatrix} \kappa = 1 - e_{\rm s} \text{ at planecentric apocenter} \\ \kappa = 1 + e_{\rm s} \text{ at planecentric pericenter}. \end{pmatrix}$$

周太陽軌道の a, e, i ⇔ 衛星軌道の a_s, e_s, i_s

a-i 平面上で捕獲条件を満たす領域 (木星の場合)

"離心率=1の近点での 捕獲(オレンジ)"までの 捕獲を考えると、捕獲 が起こるための周太 陽軌道の

- 軌道傾斜角の上限 は9.6度
- 軌道長半径の範囲 は3.5-10.2AU
 となる。

3.5-6.6 AU for *L*₁ capture

4.3-10.2 AU for L₂ capture

元の軌道長半径と衛星軌道傾斜角の関係 (木星の場合)

- ・ 衛星軌道傾斜角は0-180度の範囲に広がる
- L₁ 捕獲では a<~4.5 AU: 順行

*a>~*4.5 AU: 逆行

• L₂ 捕獲では*, a*<~5.9 AU: 逆行 *a*>~5.9 AU: 順行 逆行不規則衛星はトロヤ群天体(と起源 を同じくする天体)が捕獲されたものか

数値計算との比較

 解析解を使って生成した 衛星軌道傾斜角の分布 (元の軌道長半径別)

数値計算(制限3体問題)で
 生成した上図と同じ分布

ピークの場所の並びともとの軌道 長半径の関係が見事に一致 ->解析解の導出においた仮定は 妥当と考えられる

*捕獲が起こりうる軌道要素 (円軌道を仮定した8惑星について)

Planet	$a_{\rm p}[{\rm AU}]$	$m_{\rm p}[M_\odot]$	$i_{\rm max}[{\rm deg}]$	L_1/L_2	a_{\min} [AU]	a_{90} [AU]	a_{\max} [AU]	T_{\min}	$T_{\rm max}$
Mercury	0.387	1.66e-07	0.5348	L_1	0.3771	0.384062	0.3913	2.99987	3.00004
				L_2	0.3828	0.389961	0.3975	2.99987	3.00004
Venus	0.723	2.45e-06	1.312	L_1	0.6794	0.709609	0.7434	2.99922	3.00026
				L_2	0.7042	0.736644	0.7731	2.99922	3.00026
Earth	1	3.00e-06	1.404	L_1	0.9358	0.980198	1.03	2.99911	3.0003
				L_2	0.9722	1.0202	1.075	2.99911	3.0003
Mars	1.52	3.72e-07	0.6999	L_1	1.47	1.50492	1.542	2.99978	3.00007
				L_2	1.498	1.53524	1.574	2.99978	3.00007
Jupiter	5.2	9.55e-04	9.628	L_1	3.579	4.53527	6.632	2.95919	3.01467
				L_2	4.412	5.96215	10.2	2.95792	3.01339
Saturn	9.55	2.86e-04	6.425	L_1	7.307	8.71559	11.11	2.98163	3.00646
				L_2	8.497	10.4643	14.12	2.98125	3.00608
Uranus	19.2	4.37e-05	3.43	L_1	16.46	18.2845	20.72	2.99472	3.00182
				L_2	17.97	20.1613	23.16	2.99466	3.00176
Neptune	30.1	5.15e-05	3.623	L_1	25.61	28.5861	32.63	2.99411	3.00203
				L_2	28.08	31.6941	36.74	2.99404	3.00196

T: ティスランパラメタ