衛星系研究会2015

ガニメデの潮汐変形: 高度計測で探る内部海

鎌田 俊一¹,木村 淳²,松本 晃治³, Francis Nimmo⁴,倉本 圭¹,並木 則行³ (1)北大, (2)東工大-ELSI, (3)国立天文台, (4) UC Santa Cruz

Credit: NASA

潮汐変形

- ・衛星の潮汐応答は
 衛星の内部構造に依存
 - ・内部海の有無
 - 密度、弾性率、粘性率

GALA: JUICE搭載レーザ高度計

- JUICE: JUpiter ICy moons Explorer
 - ESA+JAXAによる将来木星系衛星探査計画
 - 2022年打上、2032年ガニメデ周回軌道投入予定
- GALA: GAnymede Laser Altimeter
 - レーザ測距
 → ガニメデの形状を決定
 同一地点で複数回計測
 →潮汐変形の検出を目指す

Adapted from the GALA proposal paper [2012]

先行研究

- 1次元モデル [Moore & Schubert, 2003]
 - 重要な仮定:各層一様粘性率
 - 結果: 潮汐応答は氷の粘性率
 が支配
 - <~10¹³ Pa s:液体
 - >~10¹⁵ Pas: 弾性体
 - 課題
 - 氷の粘性率は深さ依存性無視
 - •計算したパラメータ範囲が狭い
 - → より現実的なモデルを用いた パラメータスタディが必要

[Moore & Schubert, 2003]

本研究

- ・1次元ガニメデ潮汐変形モデル構築
 - 氷地殻の粘性率の深さ依存性
 - •温度構造:熱伝導
 - ・レオロジー:純水氷
- 一様粘性率モデルとの比較

ガニメデにおける潮汐ラブ数 h₂の支配要素の決定

- パラメータスタディ:基準粘性率、剛性率、・・・

- 支配方程式 (線形粘弾性体) $\rho \frac{d^{2} u}{dt^{2}} = \nabla \cdot \sigma + \rho \nabla \Phi$ $\nabla^{2} \Phi = -4\pi G \rho$ $\frac{d\sigma_{ij}}{dt} + \frac{\mu}{\eta} \left(\sigma_{ij} - \frac{\sigma_{kk}}{3} \delta_{ij} \right) = \lambda \frac{de_{kk}}{dt} \delta_{ij} + 2\mu \frac{de_{ij}}{dt}$
- 潮汐ラブ数 h₂ (無次元数)
 h₂ =
 表面鉛直変位 × 重力加速度 潮汐ポテンシャル
 - 絶対値:潮汐変形の振幅
 - ・ 偏角: 潮汐変形の位相のずれ
- [e.g., Alterman et al., 1959; Takeuchi & Saito, 1972; Peltier, 1974]

u: 変位ベクトル
σ: 応力テンソル *e*: ひずみテンソル
Φ: 重力ポテンシャル *t*: 時間 *ρ*: 密度 *μ*: 剛性率 *η*: 粘性率 *λ*: Laméの第一定数 *δ*: Kroneckerのデルタ *G*: 万有引力定数

モデル:1次元球対称非圧縮

- •4層(海なし)または5層(海あり)
 - 海ありの場合、海の厚さ ≥10 km
 - 薄い海ではコリオリカなどが重要 [e.g., Matsuyama, 2014]

モデル:パラメータ

層	厚さ (km)	密度	剛性率	粘性率 (Pa s)	
		(kg/m³)	(GPa)	深さ依存	一様
lce l	D _{sh}	1000	μ_i	$\eta_i = \eta_i(\mathbf{z})$	η_i
Ocean	$H_o = 2 \times (145 - D_{\rm sh})$	1000	0	0	0
HP ice	$911.2 - D_{\rm sh} - H_o$	~1300	μ_i	$\eta_{ m HP}$	η_i
Rock	1020	3500	100	10 ²⁰	10 ²⁰
Metal	700	8000	0 or100	0 or 10 ²⁰	0 or 10 ²⁰
ンレキ	ト圭几		z は深さ	。赤字はフリ-	-パラメータ。

• 氷地殻

- 定常熱伝導:
$$0 = \frac{1}{r^2} \frac{d}{dr} \left(kr^2 \frac{dT}{dr} \right)$$

- 純水氷の流動則: $\eta_i(z) = \eta_{ref} \exp\left(\frac{E}{R_g} \left(\frac{1}{T} - \frac{1}{273} \right) \right)$
 $k = 0.4685 + \frac{488.19}{T(K)} (W/m/K), T_{surface} = 100 (K), T_{base} = 273 (K),$
 $\bar{p} = 1942 (kg/m^3), E = 60 (kJ/mol), \omega = 1.016 \times 10^{-5} (rad/s),$
 $R_g = 気体定数$

深さ依存粘性率 結果:海なし、

- 支配要素 - 高圧氷の粘性率 (η_{HP})
- ・氷地殻の基準粘性
 率には依存しない
 → 表層の性質に
 寄らない

・支配要素 - 氷の粘性率 (η_i)

大振幅、小位相差
 → 内部海

結果:海あり、深さ依存粘性率

- ・支配要素
 - 氷地殻厚 (D_{sh}) – 剛性率 (μ_i)
- 大振幅、小位相差
 → 内部海
- 一様粘性率の場合
 とは対照的
 低粘性率依存性

Conductive shellにおける潮汐

- ・大きく寄与する要素
 - 内部海の有無
 - 内部海なし → 高圧氷の粘性
 - 内部海あり → 氷地殻の弾性
 - 一様粘性率モデルと対照的
 - •表層は弾性板として振る舞う

- あまり寄与しない要素(内部海あり)
 - 氷の粘性率構造
 - 内部海の厚さ

観測されうる振幅と位相遅延

		大きな振幅 <i>h</i> 2 > 1	小さな振幅 <i>h</i> 2 < 0.5		
大位相 (>20	遅延)°)	観測されない	内部海なし + 中程度の _{ηHP}		
小位相遅延 (<10°)		内部海あり ーもしくはー 内部海なし+ 低いη _{HP}	内部海なし + 高いη _{HP}		
低粘性率(<~10 ¹² Pa s)の氷は、潮汐変形の タイムスケールでは液体として振る舞う					

潮汐による火山活動

- ・潮汐力のみで氷地殻は裂けない
 - 潮汐応力~数10 kPa
 - 引っ張り強度~数100 kPa
- 考えられる他の要素
 応力の増加
 - ・非同期回転、衝突、・・・
 [e.g., Collins et al., 2010]
 引っ張り強度の低下
 - •空隙、疲労、•••

[e.g., Hammond et al., 2015]

Adapted from Lee et al. [2005]

まとめ

ガニメデの1次元潮汐変形モデルを構築
 - 深さに強く依存する粘性率構造

パラメータスタディによる支配要素決定
 内部海あり)氷地殻の弾性的性質
 内部海なし)高圧氷の粘性的性質

・ 潮汐力だけで氷地殻は裂けない
 – 現在は噴火(噴水?)しにくい