ORBITAL STRUCTURE AND DYNAMICAL EVOLUTION OF

Patryk Sofia Lykawka (パトリックソフィアリカフィカ) pa 近畿大学 総合社会学部 天文学分野

patryksan@gmail.com

UNDER CONSTRUCTION

OUTLINE

- I: Introduction and motivation
- II: Dynamical stability and planet migration
- III: Stable TNO populations and general implications
- IV: Scenarios for the origin and evolution of TNOs
- V: Main conclusions

I – Introduction and motivation

Trans-Neptunian objects (TNOs): icy/rocky bodies orbiting beyond Neptune

TNOs orbital distribution Main populations: classical, resonant*, scattered, and detached TNOs

(Gladman et al. 2002; Morbidelli & Brown 2004; Elliot et al. 2005; Delsanti & Jewitt 2006; Lykawka & Mukai 2007b; Gladman et al. 2008)

 Associated with mean motion resonances (MMRs) with Neptune

Evolutionary processes: planet migration, collisional evolution and gravitational sculpting by the planets

(Malhotra 1995; Hahn & Malhotra 1999; Kenyon & Luu 1998, 1999; Kenyon & Bromley 2004; Morbidelli 2006; Chiang et al. 2006; Kuiper Belt Book 2008; Lykawka 2012)

The scattered disk (> 50 AU)

(Torbett 1989; Holman & Wisdom 1993; Duncan & Levison 1997; Morbidelli *et al.* 2004)

q < 40 AU:

Dynamics dominated by Neptune's gravitational scattering + MMR sticking

Likely the main source of Centaurs and their daughter short-period comets

(Ip & Fernandez 1991; Duncan & Levison 1997; Volk & Malhotra 2008)

q > 40 AU: Dynamically quasi-static

(Kuiper Belt book 2008; Petit et al. 2011; Fraser and collaborators 2008-2014: Brown and collaborators 2005-2014)

Main physical properties

 \bigstar A few (?) 10⁵ TNOs with D > 100 km

★ Total mass around 0.1 Earth mass?

★ Albedos 0.03-0.30 in general

★ Rock and ice compositions (H_2O , CO_2 , CH_3OH , NH_3 , CH_4 , CO, $N_2 など$)

★ Distinct inclination, radial, color, size and albedo distributions!

 \bigstar Surprisingly high orbital excitation and fine structure

(Kuiper Belt book 2008)

- (Dawson & Murray-Clay 2012)
- → What are the main mechanisms responsible for this structure?

Uupiter

rojans

(wikipedia)

Trojans

Objects orbiting about the Lagrangian L4 and L5 points in their 1:1 MMR Typically lie ~60 deg ahead of or behind the position of the planet

Jupiter Trojans: More than 3000 objects ★ Intrinsic population may exceed the population of asteroids within the same size range!

(Sheppard & Trujillo 2006)

Neptune Trojans: Nine objects ★ Intrinsic population is at least as large as the Jovians (Chiang et al. 2003; Chiang & Lithwick 2005; Lykawka et al. 2009, 2011)

Surprisingly: e = 0-0.1(5) and i = 0-30(35)deg → How to reconcile this with the KB and planet formation?

Outstanding questions

→ What caused the orbital excitation of the Kuiper belt? (excitation of e and i around 40-50 AU)

→ How to explain the four main classes of TNOs?

In particular, the fine structure of **cold and hot classical TNOs** AND **resonant populations**

→ How TNOs and other minor body populations are related?

Ex: Centaurs, planetary Trojans, irregular satellites, outer main belt asteroids, etc.

→ How the giant planets (and extra planets) evolved to produce the current KB?

II – Dynamical stability and planet migration

Initial Eccentricity

⁽Duncan et al. 1995)

Stability maps of TNOs (i = 0)

Initial Eccentricity

⁽Duncan et al. 1995)

Stability map of TNOs (all i)

Strong perturbations at q < 35 AU

Perturbations also seen near 42 AU and around the 5:3, 7:4 and 2:1 resonances

★ Long-term sculpting of "weaker" MMRs plays an important role in the region

★ Missing stable objects in the outer region...

Strength of MMRs beyond Neptune

Strength/stickiness of MMRs beyond Neptune (Lykawka & Mukai 2007c)

Planet migration in the solar system

Stage 1: Driven by interactions of the (giant) planets with the nebular gas over the first few Myr (Morbidelli et al. 2007; Pierens & Raymond 2011; Kley & Nelson 2012; D'Angelo & Marzari 2012)

Stage 2: Planet-planet or planet-embryo gravitational scattering can yield very rapid or chaotic radial displacements for any planet in the system (Brasser et al. 2009; Morbidelli et al. 2009; Morbi

Stage ③: Driven by interactions of the planets with the remaining disk planetesimals (in between and beyond)

(Fernandez & Ip 1984; Malhotra 1995; Hahn & Malhotra 1999; Chiang & Jordan 2002; Hahn & Malhotra 2005; Levison et al. 2007; Kirsh et al. 2009)

III – Stable TNO populations and general implications

Resonant TNO populations 4:1 11:2 27:4 5:2 3:1 3:2 0.8 \times 3:2 4:3 7:5 8:5 5:3 7:4 9:5 2:1 0.7 \times 0.4 q=30 AU 0.6 Eccentricity 0.5 0.3 Eccentricity 0.4 0.2-0.3 0.2 0 0.1 0 37 40 50 30 80 130 Semimajor axis (AU)

Semimajor axis (AU)

★ Members from 1:1 to 27:4. Stable populations likely represent slowly decaying captured populations formed ~4 Gyr ago (Lykawka & Mukai 2007b) (Gladman et al. 2008)
 ★ About 15-25% of the entire TNO population (Petit et al. 2011; Gladman et al. 2012)
 ★ 3:2 and 5:2 are the most populous!

1:1 MMRs (Jupiter Trojans)

★ Approximately 25% of captured Jupiter Trojans survived 4 Gyr

Links Jupiter (Trojans) science with the primordial Kuiper belt

Similar results also in Nesvorny et al. 2013)

1:1 MMRs (Neptune Trojans)

★ Approximately 1-5% of captured Neptune Trojans survived 4 Gyr

Links Neptune (Trojans) science with the primordial Kuiper belt

1:1 MMRs (Saturn and Uranus Trojans)

★ Saturn and Uranus were able to capture a significant population of Trojan objects after planet migration

What happened to captured Trojans of the four giant planets?

Table 2. Capture of Trojans by the giant planets at the end of planetary migration.

Planet	$\varepsilon_{\min}{}^{a}$	$\varepsilon_{\max}{}^{a}$	$M_{\min} (M_{\oplus})^{\mathrm{b}}$	$M_{\rm max} \ (M_{\oplus})^{\rm b}$
Jupiter	$5 \cdot 10^{-6}$	$5 \cdot 10^{-5}$	$3 \cdot 10^{-5}$	$2 \cdot 10^{-4}$
Saturn	$< 10^{-6}$	10^{-5}	$< 8 \cdot 10^{-6}$	$6 \cdot 10^{-5}$
Uranus	$5 \cdot 10^{-5}$	$5 \cdot 10^{-4}$	$6 \cdot 10^{-4}$	$7 \cdot 10^{-3}$
Neptune	$3 \cdot 10^{-4}$	10^{-3}	$4 \cdot 10^{-3}$	$2 \cdot 10^{-2}$

^aMinimum and maximum capture efficiencies (ε_{\min} , ε_{\max}). These calculations assume that a mass of between 13 and 25 M_{\oplus} of material was initially present in the planetesimal disk through which the giant planets migrated (based on Lykawka and Horner, 2010).

^bEstimated minimum and maximum masses of the captured Trojan populations for each of the giant planets at the end of their migration.

Lykawka & Horner (2010)

"weak" MMRs: rich dynamical evolutions

★ MMRs in the classical region define the fine structure and affect stability in the same region
 e.g., complex evolution of classical objects within the 7:4 MMR
 ☆ "weak" MMRs also play an important role!

"weak" MMRs (2): resonance sticking

(Lykawka & Mukai 2007c)

 ★ Scattered objects spend on average 38% of lifetimes locked in MMRs
 ★ N:1, N:2, and N:3 resonances dominate the dynamics with 100-1000 Myr captures (Kozai mechanism also common) (Fernandez et al. 2004; Gomes 2005; Gallardo 2006a,b; 2012)
 ☆ Suggests a SD consisting of scattering(ed) + resonant populations

IV – Scenarios for the origin and evolution of TNOs

Intrinsic resonant and classical populations

Planet migration

(Fernandez & Ip 1984; Malhotra 1995; Hahn & Malhotra 1999; Hahn & Malhotra 2005; Levison et al. 2007; Kirsh et al. 2009; Campobianco et al. 2011)

Chaotic orbital evolution during Stage 2:

Much faster timescales than smooth-residual migration Possible "instantaneous" capture of planetesimals in resonances

Smooth (residual) migration during Stage ③: Often modeled as an exponential migration

$$a_P(t) = a_i - \Delta a_P \cdot \exp(-t/\tau) \qquad a$$

$$a_{res} = a_N \left(\frac{j+k}{j}\right)^{\frac{2}{3}}$$

Neptunian sweeping resonances can capture planetesimals

Planet migration

Migration over a dynamically cold disk

(Malhotra 1995; Hahn & Malhotra 1999; Chiang & Jordan 2002)

★ In low-order resonances (3:2, 2:1, 5:3, etc), capture probability is high for planetesimals on initially low-e orbits

80

80

Origin of resonant TNOs: planet migration

Initially cold disk

Initially hot disk

★ Resonant TNOs partially reproduced, even beyond 50 AU (for an initially hot disk)

★ Resonance sticking cannot explain all stable populations, but capture during planet migration can. However, populous 5:2
 MMR and possibly the 5:1 MMR represent outstanding challenges
 ☆ Pre-excited Kuiper belt likely required

Summary of main models proposed

Smooth models (4GPs + 1EP)

(Lykawka & Mukai 2008)

★ Cold population and partial hot population insitu; remaining hot classicals deposited from inner regions of the planetesimal disk (< 30 AU)

★ Trojan populations partially ok

 \bigstar Detached objects ok

Cold population too massive
Lack of high-i classicals and high-i Trojans

? More distant resonant population (>60 AU) unclear
? Difficult to reconcile with giant planet formation/evolution

Instability models: Nice model

(Tsiganis et al. 2005; Morbidelli et al. 2005; Gomes et al. 2005 Morbidelli et al. 2007, 2010; Levison et al. 2008)

★ Both cold population and hot populations deposited from inner regions of the planetesimal disk (< 30 AU)

 \star Trojan populations partially ok

Detached objects unclear

unclear

?

(Levison et al. 2008)

Instability models: multiplanet

(Nesvorny 2011; Batygin et al. 2012; Nesvorny & Morbidelli 2012)

★ Cold population insitu and hot populations deposited from inner regions of the planetesimal disk (< 30 AU)</p>

 \bigstar Classicals apparently ok

2 Lack of high-i classicals2 Cold population structure unclear

Resonant population may emerge if Neptune jumped to *a* = 24-27 AU and circularized quickly (< 1 Myr)
 Detached objects unclear

Models and the source regions of TNOs

V – Main conclusions

- A complex orbital structure to be explained: Classical (cold/hot/kernel), resonant (Trojans, KB and distant), scattering(ed), detached, peculiar TNOs and groupings
- Resonant population extended to at least ~108 AU
 - Stable niches strongly point to Neptune's migration over a dynamically pre-excited Kuiper belt
 - Resonance sticking and weak MMRs play an important role
 - Trojan populations and relative fractions of resonant TNOs likely to resolve migration behavior of Uranus and Neptune
- Some **new mechanism** is needed in modeling to account for Trojans and TNOs on high-i orbits (> 20 deg). Also, the dual nature of cold and hot classical TNOs with their fine orbital structure

Future: instability-multiplanet models?

extra planets

10-100's of large planetesimals

planet migration

The Outer Solar System NABE

MMR crossings/ Planet-planet scatterings

皆さん、有難うございました!

E-mail: patryksan@gmail.com Web: sites.google.com/site/patryksofialykawka/