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Introduction

@Single Satellite System :

~Earth-Moon (Ms/M:.~0.012)
-Mass ratio to the host planet Ms/M:. is relatively high
(Ms: satellite mass, M¢: mass of the central planet)

image courtesy of NASA




Introduction

Saturnian radial direction
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All bodies are to scale except for Pan, Atlas, Telesto, Calypso, and Helene, whose
sizes have been exaggerated by a factor of 5 to show rough topography.

image courtesy of NASA

@Multiple Satellite System :

-inner major satellites: nearly circular, coplanar orbits

-located just outside Roche limit
-small mass ratio to the host planet (Ms/M:~10-4)
-increasing mass with increasing radial distance

-the existence of co-orbital satellites




Origin of Disks

Giant impact

Tidal distruption

Gaseous
circumplanetary disk

lcy mantle
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Roche limit | radial direction
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@Origin of multiple satellite system:
Crida & Charnoz (2012): 1D analytical model (Mdisk/Mc~1074)

Continuous regime (1 moon)

tidal disk F mp H@

Pyramidal regime (many moons)

tidal disk F mp

Crida&Charnoz(2012)Fig2
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@Issues with (or limitations to) previous works:

Ida et al (1997), Kokubo et al (2000):
-aimed only for the formation of the Moon

Crida & Charnoz (2012):
-Ignore satellite torques
-> mass flux weakened & resonance capture?
-Mass flux through Roche limit is constant
-> should decrease with time
-Accretion efficiency is 100%
-> NOT 100% in the tidal field (Hyodo & Ohtsuki 2014)

@ This work:

N-body simulations
-Continuous accretion processes of multiple satellites




Numerical Method

@ Gas-free global N-body simulation
-equations of motion

N
dv; T; Tr; — T;
dt M PHE Z T g — i P
J#1

-4th-order Hermite Method

-Gravity calculation by GRAPE-DR system
-Hard-sphere model (smooth particles with normal
coefficient of restitution €n=0.1)

@ Isolated aggregate sufficiently far from the Roche
limit is replaced by a single body




Initial Disk Conditions

-Equal sized particles (N=30,000-50,000)
-Radial distribution : 0.4-1.0ar (ar - Roche limit

-Specific Angular Momentum : 0.775sqrt{GMR.
-Initial disk mass : Mgiskinit + 0.01-0.05M.
-"massive disk” : Mgisk init=0.045M

-"less massive disk” : Mgisk init=0.0235M¢

t=0Tk edge-on view +=0Tx

face-on view.

Roche limit ar Tk: orbital period @ ar




Case of Massive Disk




Case of Massive Disk

(MD,inH':0.045 Mc)

»Inside the Roche limit, tidal force
prevents disk particles from
gravitational accretion.
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»The disk radially shrinks due to
inelastic collision damping and
temporary “clumps” form.
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»Tidal force soon disrupt the
clumps and spiral patterns form.

» Spirals extend radially outward
and disk material is transferred
outside the Roche limit.




Case of Massive Disk

(MD,inH':0.045 Mc)

»Outside the Roche limit,
particles start fo form
gravitationally bound
aggregates.

» Some aggregates re-enter the
Roche limit and are disrupted.

»pAggregates grow through
collisions with other
aggregates or disk particles.




Case of Massive Disk

(MD,inH':0.045 Mc)
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 t=434Tk

»The satellite and the disk
repelled each other due to
gravitational interaction

»A large amount of disk material
has fall info the central plant

t=434Tk

»A single relatively large satellite

is formed and only a very small

fraction of the disk material »

remain (e.g. Ida et al. 1997) bt L
»The formed satellite is on |

nearly circular orbit with low

inclination




Case of Less Massive Disk




Case of Less Massive Disk

+=5T« (Mp,init=0.0235M,)

» Spirals extend radially outward
and disk material is transferred
outside the Roche limit.
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»The timescale of the disk
evolution is longer and mass
transfer rate is smaller

compared to relatively massive e
disk. SR




Case of Less Massive Disk

(Mp,init=0.0235M,)

t=50T«k
p1st satellite is smaller compared
| to the "massive disk” case
Y »pThere still remain a large

amount of disk material
»A small companion is formed
with the 1st satellite

t=100Tk

»Even thought the satellite migrates LI cr 0 e

outward and the disk move inward L
due to gravitational interaction, not RN 20
huge amount of disk particles fall
intfo the central planet
»The Ist satellite migrates further e
outward




Case of Less Massive Disk
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»2nd satellite is formed from
particles piled up at the 2:1 MMR
and is locked around fthe
resonance.

(Mp,init=0.0235M,)

p1st satellite migrates sufficiently

outward and the location of its
2:1 mean motion resonance (MMR)
moves just outside the Roche
limit, where disk particles are
piled up.

Ist satellite




Orbital Evolution

Semimajor Axis [ag]

(Mdisk init=0.015M,)
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Overall Results




Satellite Mass

When X(surface densit
F(mass flux)ocX3
Thus, Msgte o< X3 oc Myisk init>

When decrease of X is NOT
negligible

-single satellite system
(Mdisk,init>0.03Mc)
Considering AM and Mass
conservation and set X(t=c0)=0
then Msate O Mdisk init

-second satellite form
(0.01Mc<Mgisk init<0.03 M)
Msate O Mdisk init2
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Satellite Mass on Disk Mass
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Dependence on Disk Angular Momentum

Mdisk,init=0.04Mc

1st satellite +
co-orbital satellite
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Dependence on Disk Angular Momentum
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Conclusions

@Multiple Satellite Formation (0.01<Misk,init/Mc<0.03)

-Ms more strongly depends on initial disk mass (Muisk,init?)

-2nd satellite is in the 2:1 MMR with the 1st satellite
-increasing mass with increasing radial distance
-nearly circular, coplanar orbit

-co-orbital satellite can form

@Further less massive disk:

o ale S,

_Satellite mass expected fo be smaller ~ =~ 470
-3rd, 4th... satellites are expec’red to be Formed ‘ \ Thny




