Compositional relationships between meteorites and planets II

Kevin Righter
NASA Johnson Space Center
2nd lecture – Friday

a) Example 2: Mars – how can we make it?
 Core size, mass and composition constraints
 Mantle constraints (from SNC)
 Crustal constraints (new datasets)
 Problems in defining the martian bulk composition

b) Example 3: Earth-Moon system
 Earth bulk X models – upper and lower mantle, core and crust
 Moon bulk X models – core size from siderophile elements and seismology
 Bulk composition estimates

c) Origin models for Earth-Moon
 Fission, capture, co-accretion do not work
 Giant impact satisfies many key parameters
 Lingering problems! (volatile elements, atmosphere, age of lunar materials)

d) What we don’t know
 Venus, Mercury and inner solar system
 No models take metal + silicate together!
 Water storage (phyllosilicates.....??????.....hornblende)
Example 1: 4 Vesta
(HED parent body)

Introduction: What are the HED meteorites?

- **diogenite**
- **eucrite**
- **howardite**
Vesta/HED link and history

McCord et al. (1970)

Gaffey (1997)
Vesta/HED problems
Should be a relatively simple case: low pressure and dry

- multiple heating?
- core formed?
- if partially melted, where are the residues?

Heating events required in partial melting scenarios

1. core formation
2. eucrites
3. diogenites
Vesta: oxygen isotopes

Mixtures that satisfy O isotopes

H-CV
L-CV
LL,L,H-CO

Boesenberg and Delaney (1997)
Fe/Mn relations

Mixtures that satisfy Fe/Mn

Goodrich and Delaney (2000)
Fe/Mn relations

Mixtures that satisfy Fe/Mn

Goodrich and Delaney (2000)
Formation model for HED/Vesta

Can explain diogenites, later eucrites and later mixing of two to form howardites

Satisfies O and Fe/Mn

From Righter and Drake (1997)
Major element evolution diagram

Equilibrium with later fractionation

From Righter and Drake (1997)
Outstanding problems
Volatile element depletion

Vesta/HED is volatile element depleted, but so are all of the terrestrial planets so far, compared to chondrites

DAWN mission
May be able to resolve some of these outstanding questions

I= Cmr²
Vesta mantle composition
Volatile elements
Th, K, U
Example 2: Mars

Martian meteorites (SNC’s) n = 44 ?

Chassigny
Olivine cumulate

Nakhlites
Clinopyroxene (olivine) cumulate

Shergottites
Basalts
Olivine phyric
Olivine, Opx phyric basaltic
Example 2: Mars

How do we know these are from Mars?

1) Noble gas composition
2) Young ages (180 Ma, 1.3 Ga)
3) Oxygen isotopes

Bogard and Johnson (1986)
Becker and Pepin (1985)
Example 2: Mars

New missions

New meteorites

Yamato 980459

MER
Example 2: Mars

Oxygen isotope models

From Sanloup et al. (1999)
From Lodders and Fegley (1997)
Example 2: Mars
Bulk composition from oxygen isotope models

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>37.33</td>
<td>36.03</td>
<td>34.8</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>1.89</td>
<td>2.29</td>
<td>2.3</td>
</tr>
<tr>
<td>MgO</td>
<td>20.90</td>
<td>23.58</td>
<td>23.6</td>
</tr>
<tr>
<td>FeO</td>
<td>36.66</td>
<td>34.76</td>
<td>30.98</td>
</tr>
<tr>
<td>composition</td>
<td>H45, EH55</td>
<td>H85, CV11, CI4</td>
<td>SNC</td>
</tr>
</tbody>
</table>
Phase diagrams for martian mantle

From Bertka and Fei (1997) From Longhi et al. (1992)
Moment of inertia

$I = Cmr^2$

For a homogeneous sphere, $C = 2/5$

Spacecraft (Viking and Pathfinder) positional data allowed C to be determined for Mars (precession of rotational axis)

$\Rightarrow 0.365$ (can help to constrain the core size)

• Recent clues to the structure of Mars' interior came from the Pathfinder spacecraft, which helped establish the planet's "moment of inertia." Objects with mass concentrated at their centers will have lower moments of inertia and will spin faster than objects with mass distributed more to the outside, even if the size, shape and total mass are the same. Based on the moment of inertia of Mars, estimates of the radius of the central metallic core range from 1,300 to 2,400 kilometers (806 to 1,488 miles), compared to the Earth’s 3,500-kilometer (2,170-mile) core.
Martian mantle composition

Bertka and Fei (1998)
Martian mantle composition

Bertka and Fei (1998)

Sanloup et al. (1999)
Summary for Mars

It is possible to constrain the mantle composition for Mars – it must satisfy spacecraft data, meteorites, cosmochemical constraints, and mineral physics.

But there is uncertainty introduced by composition of the metallic core.
Apollo samples from the Moon

6 missions, 382 kg of samples

What did we find?
- Basalt - volcanism
- Anorthosite – ancient crust
- Breccia – mixture of two from impacts
Meteorites from the Moon

Satellite image Map of Antarctica AVHRR Mosaic Color Composite

USGS

I.S. = Ice Shelf
Meteorites from the Moon

LAP 02205 – mare basalt
Exploration of the Moon - Meteorites

84 individual samples, 37 with pairings

41 kg compared to 382 kg of Apollo samples,

Mare basalts (5)
LAP02205, Y793169, A881757, NWA032*, Dho287

Feldspathic breccias (21)

Mixed breccias (11)
Dho1180, Y983885, Calcalong Creek, Y793274*, SaU169, QUE94281, MET01210, NWA3136, EET87521*, Kalahari 009, NWA773

* = pairing group
Earth – Moon system

Earth and Moon have same oxygen isotopes

Moon = dry, Earth = wet
Moon = small core (1%), Earth = large core (32%)
Silicate Earth 8% FeO, Moon 14% FeO

Small core makes Moon Fe-depleted overall
Fig. 1. A cartoon of models for the origin of the Moon.
Origin of the Moon

<table>
<thead>
<tr>
<th>theory</th>
<th>problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) capture</td>
<td>plausibility, Fe depletion</td>
</tr>
<tr>
<td>2) fission</td>
<td>angular momentum, resulting lunar comp.</td>
</tr>
<tr>
<td>3) co-accretion</td>
<td>angular momentum, Fe depletion, 5° inclination</td>
</tr>
<tr>
<td>4) giant impact</td>
<td>? many uncertainties ?</td>
</tr>
</tbody>
</table>

Summarized from Wood (1985)
“Giant Impact” Hypothesis
Hartmann and Davis (1975); Cameron and Ward (1976)
Moon forms from debris ejected when early Earth suffered an oblique collision with another protoplanet

- Extremely high energy impact late in Earth’s formation
- Coupled origin of the Earth and Moon
- Evidence of impact events believed typical of late stage terrestrial accretion

Key constraints:
Sufficient orbiting material to form Moon beyond Roche limit
\[M_D \geq 1.5 - 2 \, M_L \]

- Iron-depleted protolunar material
- Lunar core \(\leq 0.03 \, M_L \)
- Earth-Moon system angular momentum

Cameron 2000, 2001
Recent work: Late impact/smaller impactor
(Canup & Asphaug 2001)

$M_{Imp}: M_{Tar} = 1:9$

- $M_{Tot} = 1.02M_\oplus$
- $L_{Imp} = 1.2L_\oplus-M$
- $v_{Imp} = v_{esc}$
- $M_D = 1.7M_L$
- $M_{FE}/M_D = 0.02$

- Color scales with internal energy
Some implications

• Impactor:
 Impact velocity $1 - 1.1 \ v_{\text{esc}}$
 $v_{\text{Inf}} \leq 3-4 \ \text{km/sec}$
 Impactor had orbit close to that of Earth, with $\Delta a < 0.1-0.2 \ \text{AU}$

• Protolunar debris:
 Mostly from impactor, with target contribution up to 10-20% by mass
 Temperatures: $\sim 2000 - 3000 \ \text{K}$
 Large intact clumps?

• Post-impact Earth:
 Predicted temperatures $\sim 4000 - 10^4 \ \text{K}$
 Acquired $> 90\%$ of its final mass
Summary

- Wide variety of oblique, low-velocity impacts can produce satellites
- Class of impacts does exist that can account for final masses and angular momentum of Earth & Moon (least restrictive impact scenario is a late impact of $\sim0.1M_\oplus$ object)
- Terrestrial feeding zones are narrow early (0.01 to 0.04 a.u.), but become wider later (mixing between inner and outer parts if inner solar system).
Outstanding problems

- O isotopes – significance?
- Earth-Moon compositional characteristics
- Volatile element depletion of the Moon
- no known chondrite can match Earth bulk composition
 Allegre – carbonaceous chondrite
 Javoy – enstatite chondrite

Earth is difficult to understand compared to Mars, Vesta
a) oxygen diagnostic for inner solar system?

Maybe not.

Solar Wind debate (Genesis)

Mercury, Venus unknown
b) Earth-Moon compositional characteristics
Mg/Si of Earth’s upper mantle
b) Earth-Moon compositional characteristics

How to explain Earth’s super-chondritic Mg/Si?

Olivine flotation?

Upper mantle different from lower mantle?
Geophysical models predict mostly the same UM - LM

Si in core?
(but requires very reducing conditions that would produce depletions of Ga, P, Nb, and Ta that are not observed)

Conclusion: maybe Earth = non-chondritic
EH chondrite Earth?

Satisfies oxygen, Fe-FeO balance, and Os isotopes

But not tested for trace elements, or phase equilibria

Water consumed vs. FeO added

From Righter et al. (2006)

From Drake and Righter (2002)
Material provenance

Local or mixing?

Although early in process accretion occurs in narrow feeding zones, mixing between inner and outer inner solar system becomes common and extensive.

(from Chambers 2001)
How did Earth get its water?

Asteroidal?

LAP 04840

from Righter and Neff (2007)

Tagish Lake

from Keller and Flynn (2001)
How did Earth get its water?

Even small molten asteroids can hold several wt% water.

From Righter et al. (2006)
How did Earth get its water?

What happens to Earth’s water during accretion?

Some outstanding issues of wet accretion

- wet accretion? primitive solar atmosphere?
- H in core? H$_2$O in magma ocean?
- degassing? loss of H$_2$O by giant impact?

early ——> late
Summary

• Vesta can be made from known meteorites, but volatile element depletion remains unresolved
• Mars can also be made from some known meteorites, but uncertainties of large core composition make it somewhat problematic
• It is thought that Earth cannot be made from known meteorite groups, and may have been made from distinct material not in our collections

• sample return from Mercury, Venus, Moon, Mars, comets, asteroids
• Continued analysis of existing samples (Genesis) new experiments, measurements
• Integrating modelling with observations