# The Starting Materials Part II: The Origins of Organic Matter

Scott Messenger

Robert M Walker Laboratory for Space Science Astromaterials Research and Exploration Science NASA Johnson Space Center

# **Outline of This Lecture**

Introduction to organic molecules
 Molecular clouds to planetary disks
 Methods for studying interstellar organics

 Radio spectroscopy
 Infrared spectroscopy

 Interstellar chemistry

 Ion-molecule reactions
 Grain-surface chemistry

- Radiation processing of ices
- Evidence for presolar organic matter
  - Meteorites
  - Interplanetary dust

# What is Organic Matter?



Organic molecules: Compound that contain both Carbon and Hydrogen Organic molecules are <u>not necessarily</u> related to life

#### Astrophysical Importance of Organic Matter



Organic molecules have a wide variety of structures, reaching billions of atoms in human DNA



Formed/altered by numerous processes over an enormous range of physical conditions (Ehrenfreund)



Organic matter on Earth was originally delivered by meteorites and comets

# Dark Interstellar Clouds

Masses: 10-500 solar masses Sizes: 1-5 pc Temperature: 10 K Density: 10<sup>4</sup> cm<sup>-3</sup> Form a few low mass stars

This dark molecular cloud is relatively small (< 1 light year across) and isolated. This cloud is in its earliest stage of collapse, no active star formation yet.



# Cold, Dark Molecular Clouds in a Star-Forming Region



• Stars form from cold, dense clouds

- Gravitational collapse is 'inside-out'
- Initially, the core is the coldest region volatiles are depleted onto grains: ice coatings
- Radiation from nearby hot young stars affects the outer regions of protosolar cores

Dark cloud cores: T ~ 10 - 100 K,  $\rho < 10^4$  -  $10^6 \, H \, cm^{\text{-3}}$ 

Hot, radiation rich area near cloud cores: T ~ 10,000 K,  $\rho < 10^3 \, H \, cm^{\text{-}3}$ 



# Protoplanetary Disks

#### Final stages of star formation



Ehrenfreund et al. 2002

Protoplanetary disk continually accretes matter Accretion shock is a source of energy for the disk Protoplanetary disks in Orion star forming region



HST WFPC2 McCaughrean & Dell (1995)

# **Environment Near a Young Star**



*Figure 4* Schematic illustration of the chemical environment of massive YSOs. The variation in the chemical structure of the ice mantle in the envelope due to thermal desorption is shown (based on Tielens et al 1991, Williams 1993).

Van Dishoeck & Blake (1998) Ann Rev A&A

Chemical compositions vary with distance from the star, height above the midplane, and evolve with time

A protoplanetary disk is 3 dimensional!

Outer portion of the disk (> 100 AU) <u>Midplane</u>: Cold (<20K), volatiles accrete <u>Warm molecular layer</u>: 10s of K, molecules occur in gas phase <u>Photon dominated layer</u>: radiation-driven chemistry occurs



# **Known Interstellar Molecules**

| 2 atoms               | 3 atoms                       | 4 atoms                         | 5 atoms            | 6 atoms                         | 7 atoms                          | 8 atoms                          | 9 atoms                                  | 10 atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11 atoms          | 12 atoms                            | >12 atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------|-------------------------------|---------------------------------|--------------------|---------------------------------|----------------------------------|----------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H <sub>2</sub>        | C3*                           | €-C3H                           | Cs*                | C₅H                             | Céh                              | CH <sub>3</sub> C <sub>3</sub> N | CH3C4H                                   | CH3C5N (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HC <sub>9</sub> N | C <sub>6</sub> H <sub>6</sub> * (7) | HC11N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AIF                   | C <sub>2</sub> H              | I-C₃H                           | C <sub>4</sub> H   | I-H <sub>2</sub> C <sub>4</sub> | CH2CHCN                          | HCOOCH <sub>3</sub>              | CH <sub>3</sub> CH <sub>2</sub> CN       | (CH <sub>3</sub> ) <sub>2</sub> CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AICI                  | C <sub>2</sub> O              | C <sub>3</sub> N                | C <sub>4</sub> Si  | C <sub>2</sub> H <sub>4</sub> * | CH <sub>3</sub> C <sub>2</sub> H | CH3COOH                          | (CH <sub>3</sub> ) <sub>2</sub> O        | (CH <sub>2</sub> OH) <sub>2</sub> (?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C2**                  | C <sub>2</sub> S              | C3O                             | I-C3H2             | CH <sub>3</sub> CN              | HC₅N                             | C <sub>7</sub> H                 | CH <sub>2</sub> CH <sub>2</sub> OH       | H <sub>2</sub> NCH <sub>2</sub> COOH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                               |                                 |                    |                                 |                                  |                                  | 77 <b>6</b> 31                           | Giycine?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CH                    | CH <sub>2</sub>               | C <sub>2</sub> S                | c-Calla            |                                 |                                  |                                  |                                          | Chychycho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CHT                   | HCN                           | C <sub>2</sub> H <sub>2</sub> * | CH <sub>2</sub> CN |                                 |                                  |                                  | Cgn                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CN                    | HCO<br>HCO <sup>+</sup>       | NH3                             |                    | Urij3ri<br>120 Mit <sup>+</sup> | <i>с-</i> С2П4О<br>И ССИОН       |                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00<br>60 <sup>+</sup> | HCU <sup>+</sup>              | HUUN<br>DODUL <sup>+</sup>      | ILGN<br>UC NC      |                                 | ngcenon                          |                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - CO-                 | псэ<br>uoc+                   |                                 |                    | NU.CUO                          |                                  |                                  |                                          | 1ª                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| er<br>er              | ILC.                          | LINCE                           | N.CNH              | C-N                             |                                  |                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                     | 1 Without the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 310                   | HOCO+                         | HOCO <sup>+</sup>               | HCO                | <b>1.HC.</b> H* (7)             |                                  |                                  |                                          | PEA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| KCI                   | HNC                           | HCO                             | HANCN              | LHCIN                           |                                  |                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                     | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NH                    | HNO                           | H_CN                            | HNC                |                                 |                                  |                                  |                                          | XXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO                    | MeCN                          | HCS                             | SiH4*              |                                 |                                  |                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NS                    | MeNC                          | H <sub>2</sub> O <sup>+</sup>   | H-COH+             |                                 |                                  |                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NaCl                  | N <sub>2</sub> H <sup>+</sup> | e-SiCa                          |                    |                                 | <u>.</u>                         |                                  | 100                                      | : TAKI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OH                    | N <sub>2</sub> O              | СЊ*                             |                    |                                 |                                  |                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PN                    | NECN                          | -                               |                    |                                 |                                  |                                  |                                          | ACT S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | AVA ET L                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SO                    | OCS                           |                                 |                    |                                 |                                  |                                  | 0.025                                    | 1-1-K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| so+                   | SO <sub>2</sub>               |                                 |                    |                                 |                                  |                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                     | 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SiN                   | c-SiC <sub>2</sub>            |                                 |                    |                                 |                                  |                                  | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | HAR AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ALCAN-            | VNS                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SiO                   | CO2*                          |                                 |                    |                                 |                                  |                                  | 1000                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WANNIK I          |                                     | A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SiS                   | NH <sub>2</sub>               |                                 |                    |                                 |                                  |                                  | 100                                      | - AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 Aller           |                                     | and the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CS                    | H3**                          |                                 |                    |                                 |                                  |                                  | 1000                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KANNY             |                                     | State 1 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| HF                    | $H_2D^+$ ,                    |                                 |                    |                                 |                                  |                                  | the state                                | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AN AN A           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | $HD_2^+$                      |                                 |                    |                                 |                                  |                                  | A 198                                    | the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                                     | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SH*                   | SiCN                          |                                 |                    |                                 |                                  |                                  | - ALE                                    | AKS BURGEN SY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · VIII            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HD                    | AINC                          |                                 |                    |                                 |                                  |                                  |                                          | A REAL PROPERTY OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AN NOR            | FREY                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PeO?                  | Sinc                          |                                 |                    |                                 |                                  |                                  |                                          | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                     | to a reason beating his ball                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| O <sub>2</sub> ?      |                               |                                 |                    |                                 |                                  |                                  | and the second second                    | And and the state of the state |                   | States and the second               | A STATE OF THE STA |

Identifications by radio spectroscopy

Green Bank radio telescope

Müller et al. (2005) J. Mol. Struct. <u>742</u>, 215

# **Rotational Spectroscopy**

When a molecule's rotational state changes it releases a photon at radio or mm-wave frequencies.

Each molecule has a unique rotational spectroscopic 'fingerprint'

In some cases it is possible to identify 'isotopomers' of a molecule and determine its isotopic ratios



#### Rotational energy levels

- Probe of distant environments
- Temperature
  - Suitable for cold molecular clouds
- Density
- Local velocity dispersion

Limitations of rotational spectroscopy

- Only possible for gas phase molecules
- Limited to relatively simple molecules

# Infrared Spectroscopy

- IR spectra sensitive to functional groups, not entire molecules
- Best way to characterize dust, ice by spectroscopy
- Very limited ability to measure isotope ratios



FIG. 1. A schematic drawing of the infrared spectral region between 4000 and 300 cm<sup>-1</sup> (2.5–33  $\mu$ m). The range over which the interatomic vibrations of a variety of common molecular bonds fall are signified by the horizontal bars. This portion of the infrared spans virtually all the fundamental vibrational modes of the different chemical bonds associated with the most common elements. (Figure adapted from Allamandola, 1984.)

# Seeing Through Dust in InfraRed



Basic sketch of infrared astronomy. Sandford (1996) Meteoritics



in Visible and Infrared NASA / JPL-Caltech / N. Flagey (SSC/Caltech) & the MIPSGAL Science Team

Eagle Nebula (M16) Pillars Spitzer Space Telescope • IRAC • MIPS Hubble Space Telescope (insets) ssc2007-01d

# Infrared and Radio Spectra





Radio spectrum of a hot molecular cloud core. Note that many lines are still not identified!

# Polycyclic Aromatic Hydrocarbons (PAHs)



IR spectrum of a planetary nebula showing emission features attributed to PAH molecules excited by UV radiation.

3.29 μm: C-H stretch
5.25 μm: C-H bend
5.7 μm: C-H bend, C=C stretch
6.2 μm: C=C stretch
7.7 μm: C=C stretch
8.7 μm: C-H in-plane bend
11.25 μm: C-H out of plane bend



Aromatic (C-ring) molecules resist destruction by UV radiation

Energy emitted by fluoresence in several characteristic IR bands (at left)

Observed in wide range of astrophysical environments, account for 1 - 10% of all C

# Interstellar Chemistry

Gas phase ion-molecule reactions
Dust grain surface reactions
Radiation-processing of ices

# Ion-Molecule Chemistry

- Ion-molecule reactions have small or zero activation energy barriers for exothermic reactions
- Reaction rates of ion-molecule reactions may increase with decreasing temperature
- Ionization enables chemistry to occurs clouds with temperature as low as 10 K
- Ionization results from cosmic rays, that may penetrate deeply into dense clouds



# **Deuterium Fractionation**

D bonds have lower zero point energy level compared to H bonds i.e. D bonds are stronger than H bonds In the reaction below, the difference in H and D binding energy is  $\Delta E$  $H_2^+ + D \iff HD + H^+ + \Delta E$ 

 $\Delta E = kT$ . When  $T_{gas} < \Delta E$ , strong isotopic fractionation can occur



Figure 7.  $H_2$ , HD and  $D_2$  potential energy diagram.  $\Delta E_i$  is the difference between the zero point energies relative to the minimum of the molecular potential curve.

Phillips & Vastel (2002)

Exothermic exchange reactions

$$H_3^+ + HD \iff H_2D^+ + H_2 + 230K$$
  
 $CH_3^+ + HD \iff CH_2D^+ + H_2 + 370K$   
 $C_2H_2^+ + HD \iff C_2HD^+ + H_2 + 550K$ 

D enrichment propagated into other molecules (X) by gas phase ion-molecule reactions

 $H_2D^+ + X \iff XD^+ + H_2$ 

Molecules 'deuterated' on dust surfaces

Hydrogenation with D atoms from:  $H_2D^+ + e^- \iff H_2 + D$ 

# Deuterium-Rich Interstellar Molecules



D/H ratios if molecules in cold clouds enriched in D/H relative to  $H_2$ 

D/H fractionation reaches 10,000!

For comparison, the total range of D/H on Earth varies by ~20 %

# Grain Surface Chemistry

#### Model of a sub-micrometer dust grain



- Grain surface chemistry necessary to form H<sub>2</sub>
- Most effective way to deuterate molecules
- Chemical composition of ice determined by H/H<sub>2</sub>
- More difficult to model than gas-phase chemistry



Takahashi (1999) EPSL Simulation of  $H_2$  formation on  $H_2O$  ice grain

# Radiation Processing of Ice Mantles

#### Model of a sub-micrometer dust grain

(C) UV IRRADIATION PRODUCES COMPLEX MOLECULAR MANTLES



Sandford (1996) Meteoritics

Ices composed of simple molecules such as  $H_2O$ , CO, HCO, etc. are altered into complex organics by UV irradiation

Surface of dense cloud irradiated by nearby hot young stars



Dense cloud eroding by UV light from nearby hot stars (photoevaporation), uncovering small globules of denser gas within the cloud.

# Summary of Interstellar Chemistry

□ Organic molecules observed around evolved stars, cold molecular clouds, and protostellar envelopes

- □ Organic molecules formed/altered by
  - Gas phase reactions
  - Grain surface reactions
  - □ Radiation processing of ices

□ Interstellar molecules are highly enriched in D from low temperature chemical fractionation

□ Chemistry of protostellar clouds/disks varies with time and distance from the star

### Primitive Solar System objects: Asteroids and Comets



#### Primitive and Processed Components



• Red giant stars and supernovae

altered) organic materials?

• Presolar materials <10% (?)

### Characteristics of Anhydrous 'cometary' IDPs

- Porous, fragile, fine grained
- Not hydrothermally altered
- Unequilibrated mineralogy
- $\succ$  C- and N-rich (~3XCI)
- Volatile trace element-rich
- Abundant stardust
- molecular cloud material

These materials are the least altered remnants of the primordial solar system





### Searches for presolar organic matter

H and N Isotopic signatures

- Interstellar materials are isotopically distinct
- Bulk chemical analyses
  - Detailed molecular characterization
  - Difficult to distinguish components
- Microscopic studies
  - Reveal highly heterogeneous compositions
  - Limited chemical analysis tools at sub-nanogram scale
- Look in the least altered materials
  - Carbonaceous chondrite meteorites
  - 'Cometary' Interplanetary dust particles (IDPs)
  - Stardust mission samples: direct samples of comet Wild 2

### Meteoritic Organic Matter

- Major component: Acid insoluble, kerogen-like material. Low mass aromatic molecules linked with aliphatic chains. Analysis requires extraction by HF/HCl acid treatment or equivalent (demineralize the meteorite)
- Minor (1 30 %) soluble organic compounds
- >500 individual compounds identified
- Complete structural diversity, supporting abiogenic origin



Polycyclic aromatic hydrocarbons

# Murchison Meteorite Aromatic Hydrocarbons



Aromatic hydrocarbons in meteorites are low-mass and highly substituted – primarily alkylation series

Mass spectra such as this vary significantly with meteorite class (parent body alteration)

### D-Enrichments in Primitive Solar System Materials: Link to Cold Molecular Clouds?



Interstellar molecules are highly enriched in D/H

Meteorites, IDPs, and comets are Drich, preserving some presolar organic compounds

D/H ratios highly variable in IDPs, meteorites

D/H fractionation may have also occurred in the outer (>50 AU) Solar System where conditions were similar to cold clouds. Aikawa & Herbst (1999) ApJ

### <sup>15</sup>N enrichment: interstellar origin?



- N isotopic fractionation requires extremely low T (10 20 K)
- Not possible to determine precise <sup>15</sup>N/<sup>14</sup>N ratios in cold interstellar clouds
- Recent models approach necessary level of N isotopic fractionation (Charnley & Rogers ApJ 569, L133)
- But new observations of still higher <sup>15</sup>N/<sup>14</sup>N ratios challenge interstellar chemistry models

### **Evolution of Interstellar Molecules**



Chemical compositions and isotopic signatures vary across meteorite classes, reflecting effects of parent body processing

# Isotopic variability of soluble organics from meteorites

#### 50 carboxylic acids



#### Amino acids

Table 1. 8D (%e, VSMOW) of Murchison and Murray 2-amino alkanoic acids.

| Amino acid (a.)           | Murchison<br>δD (n) <sup>n</sup> | Murray $\delta D(n)^{n}$ |
|---------------------------|----------------------------------|--------------------------|
| Glycine                   | _                                | 399 ± 17 (3)             |
| D-Alanine                 | $429 \pm {}^{b}127 (3)$          | $614 \pm 61 (3)$         |
| L-Alanine                 | $360 \pm 140 (3)$                | $510 \pm 53$ (3)         |
| D-2-Aminobutyric a.       | $1338 \pm 2 (2)$                 | $1633 \pm 32 (3)$        |
| L-2-Aminobutyric a.       | $1225 \pm 135 (3)$               | _                        |
| D-Norvaline <sup>c</sup>  |                                  | $1505 \pm 9$ (2)         |
| 2-Aminoisobutyric a.      | $3058 \pm 186 (3)$               | $3097 \pm 86 (4)$        |
| DL-Isovaline <sup>d</sup> | $3419 \pm 118 (2)$               | $3181 \pm 108$ (4)       |
| L-Isovaline <sup>c</sup>  | _ ``                             | $3283 \pm 46(3)$         |
| D-Valine <sup>c</sup>     |                                  | $2432 \pm 11$ (2)        |
| L-Valine                  |                                  | $2266 \pm 101$ (3)       |
| DL-2-Methylnorvaline      | 2686 (1)                         | $3021 \pm 45 (4)$        |
| D-2, 3-Dimethylbutyric a. | 3318 (1)                         | $3604 \pm 13 (2)$        |
| D-Allo isoleucine         |                                  | $2251 \pm 45 (3)$        |
| L-Allo isoleucine         | _                                | $2465 \pm 31 (3)$        |
| L-Isoleucine              |                                  | 1819 ± 27 (3)            |

Pizzarello & Huang 2005

- Variable D/H observed among dozens of compounds extracted from meteorites
- D enrichment commonly ascribed to interstellar heritage

### Meteoritic α-Amino Acids: Byproducts of Aqueous Alteration?

$$R = C = 0 + HCN = HO = HO = C = N = N = H_2O = H_2N = C = N$$

Production of  $\alpha$ -amino acids through 'strecker synthesis.' Pizzarello et al. (2006), Peltzer & Bada (1978)

 $\alpha$ -amino acids in meteorites are thought to have formed from reactions between aldehydes, ketones, NH<sub>3</sub> and HCN during aqueous alteration

The D-enrichments in these molecules are thus not primary, but a remnant signature from interstellar precursors

# D-rich pyrolysis products



Wang et al. (2005) GCA 69, 3711

Experiments to disentangle the components of insoluble organic matter reveal minor, highly Denriched subcomponents

Isotopic variations suggest the subcomponents of the insoluble organic matter had differing formation/alteration histories

# H Isotopic *Spatial* Variations in Meteorites and IDPs



- Primitive meteorites and IDPs exhibit µm-scale heterogeneity in their D/H ratios
- Average δD of cluster IDPs (≥ +1,300 ‰) is similar to CR chondrites (1,000 – 1,300 ‰)
- Very high D/H ratios (> 5 x SMOW) are more common in cluster IDPs than in meteorites so far.



Microscopic 'nuggets' having large isotopic anomalies in IDPs and meteorites may be intact samples of the organic starting materials







D/H ratio image of a meteorite Busemann et al. (2006)

Meteorites, IDPs, and comets have D-rich organic components, possibly preserved molecular cloud material

Rare, microscopic regions of IDPs and meteorites have D/H ratios that reach those of interstellar molecules

D- and <sup>15</sup>N-rich hotspots far exceed values observed in organic extracts

#### Analysis of D-hotspot by TEM and FTIR



#### **Sample Description**

+ 30  $\mu$ m IDP pressed into Au foil

 <1 μm enstatite, forsterite, anorthite, amorphous silicates, Fe sulfides, abundant organic material

#### Organic characteristics (FTIR):

D hotspot has abundant aliphatic hydrocarbons compared with meteorites

#### **Isotopic Measurements**

D/H ratio is 50 x terrestrial values – *the highest value found in the Solar System* 

1 silicate stardust grain (300 nm) found!

The D-hotspot contains many crystalline silicates that formed in the Solar System

Conclusion: This is not an interstellar rock ⊗
Big question: What was the original form of the organic matter?

#### FTIR spectra of IDPs



#### **Tagish Lake Meteorite Recovery**

#### Carbonaceous chondrite fall

- Unique classification as CI2 intermediate between CI and CM [1]
- Orbit traced to outer asteroid belt [1]
- Reflectance spectra similar to outer belt asteroids [2]
- Abundant presolar SiC and nanodiamonds [3]
- High abundance of organic C [3]
- Minimal terrestrial contamination: ideal sample
  - to study indigenous organics

Brown et al. (200) Science 290, 320
 Hiroi et al. (2001) Science 293, 2234
 Grady et al. (2002) Met Planet Sci 37, 713

### Sub-µm Organic Globules in Tagish Lake

Numerous (>100) sub-mm hollow globules observed in situ. Approximately 1 per 100  $\mu$ m<sup>2</sup>

<u>Size range</u>: 100 – 1000 nm

Structure: Rounded, hollow, concentric shells observed

Composition: amorphous C trace H, N, O, S







### H and N Isotopic Anomalies in Organic Globules



Top: Brightfield TEM image Bottom: Energy filtered C image

Nakamura-Messenger et al. (2006) Science

### C and N Isotopic Compositions of Tagish Lake Organic Globules



Comparison of C, N isotopic compositions of TL organic globules with bulk meteorite samples

### Isotopic Constraints on the Organic Globule Formation Environments

D enrichments due to low T chemical fractionation Fractionation increases exponentially as T drops

D/H enrichment of ~10 x terrestrial may have been possible in the Kuiper Belt. (T<50 K, ionization)

Smaller mass difference in N isotopes reduces difference in bond strength: Fractionation is smaller and occurs at lower T

 $^{15}$ N/ $^{14}$ N enrichment of ~2 x terrestrial may only have been possible at T ~10 K <u>Primary H fractionation reaction</u>  $H_3^+ + HD \iff H_2D^+ + H_2 - 178K$ 

Accretion of D onto grain surfaces dominates deuteration into solids

Primary N fractionation reaction

 $^{15}N + ^{14}N_{2}H^{+} \iff ^{14}N + ^{15}N^{14}NH^{+} + 30K$ 

This reaction can be retained in solids when nearly all volatiles have condensed Charnley & Rogers ApJ 569, L133

# Origins of Organic Globules



Figure courtesy of S. Sandford

Dust grains in cold molecular clouds accrete all condensable species.

UV converts icy coatings into refractory organics

The organic globules may have condensed on  $H_2O$  ice grains that later sublimed, leaving them hollow

The organic globules originated in a cold molecular cloud or at the outermost regions (>100 AU) of the protosolar disk



Cold, irradiated molecular cloud



# Summary: The Starting Materials

 $\bullet$  The Solar System was constructed from sub- $\mu m$  mineral grains, solid organic matter, and mixed organic ices

• Source materials included: evolved stars, interstellar clouds, various stages of evolving protosolar core and protoplanetary disk

 $\bullet$  Primitive solar system materials are complex mixtures of presolar and solar system materials at  $\mu\text{m}\mbox{-scales}$ 

• The search continues for the least processed remnants of the starting materials. New comet samples and improving technology lead the way.



Cometary dust particle: typical view of the Solar System starting materials