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Lecture 2: Chondrites & chondritic components: Implications for 
understanding processes in the solar nebula

Part I.  Chronology of chondritic components
Part II. Origin & evolution of O-isotopic reservoirs in the early

Solar System

Lecture 1: Introduction to chondritic meteorites
Part I. Classification of chondritic meteorites
Part II. Chondritic components: Major characteristics & origin
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• Based on chemical compositions & textures:
• chondritic meteorites (escaped melting, 

but most experienced thermal processing 
on asteroids, such as aqueous alteration, 
thermal & shock metamorphism)

• non-chondritic meteorites
• primitive achondrites (experienced 

low degrees of melting & largely 
retained chondritic bulk chemical 
compositions)

• differentiated meteorites
(experienced partial or complete 
melting & differentiation)



Chondrites

• chondrites (exc. CI) consist of
• chondrules
• refractory inclusions
• Fe,Ni-metal
• fine-grained matrix

• chondrules, refractory inclusions & 
Fe,Ni-metal & most of matrix 
materials formed in the 
protoplanetary disk by high-
temperature processes, such as 
evaporation, condensation & melting

• some portion of matrix materials 
escaped high-temperature processing

1 mm
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CR chondrite, PCA 91082



Classification of chondrites
• Based on bulk chemistry, O-isotopic compositions, mineralogy & 

petrography, chondrites are divided into 15 groups; 13 of them 
comprise three major classes

Carbonaceous
CI  CM  CO  CV  CK  CR  CH  CB

Enstatite Ordinary Other
EH  EL H  L  LL R  K

• Carbonaceous chondrites: letters designating the groups refer to a typical member 
of a chondrite group (CI – Ivuna-like; CM – Mighei-like; CO – Ornans-like; CV –
Vigarano-like; CK – Karoonda-like; CR – Renazzo-like, CB – Bencubbin-like, CH 
– high metal)

• Enstatite chondrites: EH & EL – high & low metallic iron
• Ordinary chondrites: letters designating the groups refer to bulk iron contents (H –

high total iron; L – low total iron; LL – low metallic iron, low total iron)
• R – Rumuruti-like; K – Kakangari-like (grouplet composed of 2 members)
• ungrouped chondrites are chemically and/or mineralogically unique & cannot be 

classified into existing chondrite groups (e.g., Acfer 094, Adelaide)



CIs are compositionally most similar to the Sun

Palme & Jones (2003) TOG



Classification parameter: Bulk chemical composition

all data from Wasson & Kallemeyn



Classification parameter: Bulk chemical composition

all data  from Wasson & Kallemeyn



Classification parameter: O-isotopic composition

δ17,18O = [(17,18O/16O)sample/(17,18O/16O)SMOW − 1] × 1000, Standard  Mean Ocean Water
all data from Clayton's lab



Classification parameter: Mineralogy & petrography
• variations in 

modal abund. of 
chondrules, 
CAIs, metal & 
matrix

• chondrule 
textures & 
compositions



Classification parameter: Mineralogy & petrography

• variations of chondrule textures & 
compositions



CVs: oxidized Allende-like & Bali-like & reduced subgroups

• CV subgroups may reflect postaccretionary alteration processing



CB chondrites: CBa & CBb subgroups



CB chondrites: CBa & CBb subgroups

• CB subgroups reflect primary accretionary processes



Not all carbonaceous chondrites are C-rich
• term "carbonaceous" is somewhat misnomer: only CI, CM, & CR 

chondrites are enriched in C relative to noncarbonaceous chondrites 



CC vs. nonCCs: O-isotopic differences

• O-isotopic compositions of CCs are below TFL (except CI & metam. CM)
• O-isotopic compositions of nonCCs are above TFL (except K chondrites)

all data from Clayton's lab



CC vs. nonCCs: Mineralogical differences
• matrix/chondrule ratio: >0.9 in CCs; <0.9 in nonCCs, except CHs & CBs
• CAI abundances: >0.1 vol% in CCs; <0.1 vol% in nonCCs



CC vs. nonCCs: Chemical differences
• refractory lithophile/Mg abundance ratios relative to CIs: 

> 1.0 in CCs; <0.95 in nonCCs



Secondary classification parameters
• Each chondrite group is considered to have sampled a separate asteroid
• Chondrites experienced thermal metamorphism & aqueous alteration on 

their parent asteroids (Adrian Brearley)
• Van Schmus & Wood (1967) divided chondrites into petrographic types 1-6

Chondrites

CI CM CO CR CB CH CV CK    H L LL      EH EL   R   K
Carbonaceous   Ordinary   Enstatiteclass

group
petr. type 1 3-41-2 3 3-6 3-6 3-61-2 3 3-63-4 3

• type 3 are called unequilibrated
• type 3 ordinary, CV & CO chondrites are divided in subtypes (3.0-3.9); 

type 3.0 are considered the most primitive chondrites
• type 4-6 are equilibrated

• sequence 3 → 4 → 5 → 6 represents increasing degree of chemical 
equilibrium & textural recrystallization during thermal metamorphism

• type 1 & 2 represent aqueously altered chondrites (CI1, CR2)
• sequence 3 → 2 → 1 represents increasing degree of aqueous alteration 

(abundance of phyllosilicates)



Petrologic types: H3-6

Courtesy of G. Huss



• Confocal Raman miscroscope WiTech 300



Use of Raman spectroscopy for classification of type 3 chondrites

3.0

3.1

3.4

3.6

HR-TEM Raman spectra

Bonal et al. (2006) GCA

• structural order of the insoluble 
organic matter is sensitive to thermal 
metamorphism

30×30 nm

40×40 nm

10×10 nm



• Krot A.N., Keil K., Goodrich C.A., Scott E.R.D., & Weisberg M.K. 
(2003) Classification of meteorites. pp. 83-129. In Meteorites, Comets, 
and Planets (ed. A.M. Davis) Vol. 1, Treatise on Geochemistry (eds. 
H.D. Holland & K.K. Turekian), Elsevier-Pergamob, Oxford.

• Weisberg M.K., McCoy T.J., & Krot A.N. (2006) Systematics and 
evaluation of meteorite classification. pp. 19-53. In Meteorites and the 
Early Solar System II (eds. D.S. Lauretta & H.Y. McSween Jr.), The 
University of Arizona Press.

Literature



Part II. Chondritic components: Major characteristics & origins



Chondritic components
• refractory inclusions

• CAIs
• AOAs

• chondrules
• Fe,Ni-metal
• matrix

1 mm

CAI
CAI

chd

matrix
CR chondrite, PCA 91082



Mineral stability in the solar nebula

Courtesy of A. Davis



Ca,Al-rich inclusions (CAIs)
• CAIs consist of refractory, crystalline Ca,Al,Ti-minerals with 

condensation T > 1450 K at Ptot = 10-3 bar



Non-igneous & igneous CAIs 

• irregularly-shaped, porous  CAIs with 
volatility-controlled rare earth element 
(REE)  patterns  (Group II): solid 
condensates



Melted CAIs experienced volatilization
• most CAI melts experienced volatilization which resulted in mass-

dependent fractionation of Mg, Si & O isotopes

McKeegan et al. (2000) MAPS

Richter et al. (2002) GCA



Experimental constraints on melting of Type B CAIs: Cooling rates

Mendybaev et al. (2006) GCAStolper & Paque (1986) GCA

• condensation of precursor material from a hot gas of solar composition as it 
cooled to T ~ 1050-1170°C (for PH2

= 10-3 – 10-5 bar)
• reheating of precursors to ~ 1400°C & cooling at 1-50 K/hr
• crystallization & loss of significant fraction of Mg & Si by evaporation 

melilite: solid solution between
Ca2MgSi2O7 & Ca2Al2SiO7

↓ cooling of CAI 
melt from 1430°C 
to 1306°C at 
10°C h-1 + 
annealing for 29 hrs 
& quenching  
reproduce textures 
& compositional 
zoning of melilite 
grains

MacPherson et al. (2005) CPD



Experimental constraints on melting of Type A & Type B CAIs: 
Bulk chemical compositions

• Bulk compositions of igneous 
CAIs are depleted in Si & Mg 
compared to the calculated 
compositions of condensates 

• such depletions can be explained 
by non-equilibrium evaporation 
into H2 gas at 1700 K from melt 
droplets with compositions on a 
condensation trajectory

Grossman et al. (2000) GCA



Experimental constraints on melting of Type B CAIs: Pressure
• with melilite mantle: Type B1
• w/o melilite mantle: Type B2
• depletion of melt surface in Mg & Si 

due to higher evaporation rates 
compared to diffusion rates in melt

• Type B1: evaporation of CAI melt in a 
gas with PH2

> 10-5 bar
• Type B2: evaporation of CAI melt in a 

gas with PH2
<10-5 bar (Richter et al., 2002, 

GCA)



δ29Si & δ25Mg vs. distance from the center of 
CAI compared with calculated variations 
during evaporation at different PH2. 
Sublimation of the solid CAI for 10 yr at T 
=1300 K and PH2 = 10-7 bar.

Constraints on melting of a CTA CAI
• Shahar & Young (2007) EPSL measured Si 

& Mg isotopic compositions in melilite of a 
CTA CAI by LA MC-ICPMS

• modeled chemical & isotopic effects of 
evaporation of a molten CAI;  obtained a 
univariant relationship between PH2 & time 
during melting

CAI was molten for a cumulutive time of 
several hours to 15 days, depending on 
temperature & thermal history
CAI experienced subsolidis heating that 
produced diffusion limited isotope 
fractionation at its margin 

• assuming equilibrium vapor pressure of gas 
component i (Mg, Si) for the CMAS melt is 
>> than ambient backgroung vapor pressure 
of i → number density of CAIs 10-3 to 2 m-3 

(average linear separation of ~8 to 0.8 m)

Calculated PH2-time curves for evaporation 
of a molten CAI at 1773 K



Amoeboid olivine aggregates (AOAs)

• aggregates of CAIs & forsterite + Fe,Ni-
metal condensates at ~1350-1450 K

• CAIs & AOAs formed in the same nebular 
region (oxygen & Mg isotopes; next 
lecture)



Wark-Lovering & accretionary rims around CAIs



CAIs are the oldest solids formed in the Solar System
• 207Pb-206Pb ages of CV CAIs: 4567.11±0.16 Myr
• evidence for presence of short-lived radionuclides 

[10Be, 26Al, 41Ca, 53Mn, 60Fe(?)] 

Amelin et al. (2002) Science Begemann (1993)

• some preserved 
nuclear isotopic 
anomalies



CAIs & AOAs in primitive chondrites are 16O-rich
• CAIs & AOAs plot along slope-1 line
• AOAs & most CAIs in primitive 

(unmetamorphosed) chondrites are 
uniformly 16O-rich

• some igneous CAIs are 16O-depleted

δ17O = [(17O/16O)sample/(17O/16O)SMOW − 1] × 1000
δ18O = [(18O/16O)sample/(18O/16O)SMOW − 1] × 1000, 

where SMOW is Standard Mean Ocean Water
∆17O = δ17O - 0.52 × δ18O



Constraints on the origin of CAIs & AOAs: Summary

• early, possibly within 105 years of Sun formation (next lecture)
• in nebular region(s) with ambient temperature >1350 K & 16O-rich 

isotopic composition
• by evaporation-condensation processes
• some were subsequently melted (either by shock waves or by X-ray 

flares) at Ptot 10-4 – 10-9 bar & cooled at 1-100 K/hr
• number density of CAIs 10-3 to 2 m-3 (linear separation of ~8 to 0.8 m)
• under ~solar redox conditions (variations in dust/gas ratio up to 50×solar 

may be required to explain chemistry of AOAs & WL-rims)
• subsequently were isolated from hot nebular region



Chondrules are less refractory than CAIs & AOAs

• igneous objects, ~0.01-10 mm in size,  
composed largely of Fe,Mg olivine & 
pyroxene, Fe,Ni-metal, & glassy or 
microcrystalline mesostasis



Diversity of chondrule textures, mineralogy & chemistry

• most chondrules have porphyritic textures
• major chemical types: FeO-poor (Type I), FeO-rich (Type II) & Al-rich



Chondrules formed by repeatable heating events

Fe2SiO4 + C = 2Fe + SiO2(in melt) + CO2

• relict grains & igneous rims suggest 
chondrule-forming events were repeatable



Precursor dustball hypothesis
• chondrules formed by melting of dustballs composed of fine-grained 

material (crystalline or amorphous) & a coarse-grained component
• fine-grained component was similar to matrix
• coarse-grained component consisted of fragments of earlier generations of 

chondrules & refractory inclusions 

Precursor 
dustball

metal

silicates

dust

Molten
droplet

relict 
grains

Chondrule

Courtesy of R. Jones



Experimental & observational constraints on melting of chondrules
• chondrule textures, major & minor element zoning, 

high abundance of volatile elements
heating within minutes
peak heating temperature ~1650−1850 K
growth from a melt cooling at 100−1000 K/hr 
evaporation of Na is suppressed under oxidizing 
conditions

• no evidence for mass-dependent isotope 
fractionation of K, Fe, Si & Mg (<1 ‰/amu)

isotopic fractionation could be suppressed at 
high Ptotal = 10-3−10-4 bar & enhanced dust/gas 
ratio (~1000×solar)
isotopic fractionation could be erased if 
vaporized gas back reacts with chondrule melt 
(number density of chondrules ~10 m-3)

Hewins et al. (2005) CPD



Tachibana & Huss (2005) GCA

Experimental & observational constraints on melting of chondrules

• high heating rate (>104-106 K/hr) is required to 
suppress S isotopic fractionation from Fe-S melt 
before silicates were melted extensively



Open-system behavior of chondrule melts
• mineralogical zoning in Type I chondrules:
Mg2SiO4 → Mg2Si2O6 → SiO2; increase of Si cont.

• comp. of melt in Type I chondrules is not controlled
by crystallization of olivine or pyroxene →
Si condensed into chondrule melt

Libourel et al. (2006) EPSL

• radial min. & chem. zoning in Type I chondrules:
Mg2SiO4 → Mg2Si2O6 → SiO2; increase of Si, 
Mn, Cr, Na, & K towards chondrule peripheries

• melt composition of Type I chds is not controlled 
by crystallization of olivine or pyroxene → Si & 
other elements condensed into chondrule melts



Presence of asteroidal material among chondrule precursors?

Libourel & Krot (2006) EPSL

• some Type I chondrules contain 
relict lithic clasts of forsteritic 
olivine & ±Fe,Ni-metal with 
granoblastic textures requiring 
annealing at high temperature for 
several days (fragments of early 
planetesimals?)



Chondrules are 16O-depleted compared to CAIs & AOAs
• 16O-depleted compared to 

CAIs & AOAs
• some igneous CAIs are 

similarly 16O-depleted 
(were remelted during 
chondrule melting)



Constraints on the origin of chondrules: Summary

• formed over several Myr (next lecture) by melting of solid precursors
• at lower ambient temperature (<600-1000 K) than CAIs (>1350 K)
• in a more 16O-poor gaseous reservoir (∆17O > −5‰ vs. <−20‰)
• under more oxidizing conditions than CAIs & AOAs
• under high Ptot (>10-3 bar) & dust/gas ratio (up to 1000×solar) or high 

number density of chondrules (10 m-3) (linear separation of 10 cm-1)
• during multiple transient heating events of unknown nature (shock waves)

heating at 104-106 K/hr
peak heating temperature ~1650-1850 K
cooling rates 10-1000 K/hr


