A UNIQUE LOW MASS ECLIPSING BINARY DISCOVERED BY
CoRoT IN NGC2264

Ed Gillen, University of Oxford

* A Young Eclipsing Binary with a Circumbinary Disk?
» CoRoT lightcurve shows out-of-eclipse variations in addition to stellar eclipses
» Obscuration due to a warped and/or clumpy inner disk
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* | present: * Future work:
» The eclipsing binary parameters » Modelling the system (binary
> Outline evidence for the disk hypothesis stars + disk) to re-create
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- Tracing the Evolution of Dust in Protoplanetary Disks 3
The First Steps of Planet Formation*

Isa Oliveira
Johan Olofsson, Klaus Pontoppidan, Ewine van Dishoeck, Jean-Charles Augereau, Bruno Merin

. * Silicate features emitted by dust in the surface layers of protoplanetary disks
. * The features at 10 and 20 pm

v’ probed by Spitzer/IRS spectra 2y

v’ sensitive to dust size and composition - o e

v shed light on the progress of planet formation A i -

* * Investigation of dust mineralogy for sets of young stars surrounded by disks at . g ;,,Ai
different mean cluster ages and disk geometries -> how these parameters evolve ; "
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-> An equilibrium is reached very quickly
(< 1 Myr), lasting until until disks
dissipate
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Towards combined modeling of S e ot oy,
planetary accretion and differentiation

undifferentiated impactor magma ocean
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Can a local depletion in protosolar nebula explain the low mass of Mars?

André Izidoro, Nader Haghighipour, Othon C. Winter and Masayoshi Tsuchida

Sé&o Paulo State University - UNESP - Grupo de Dinamica Orbital & Planetologia, Brazil
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Wind shelter and Wind turbines on Mars.
Mars Is a windy planet

Enemy : Friend
Environmental problems : Solar panels Nuclear batteries
— Solved :
High radiation :
Solved 5 03 ord t Q :
0 5 order greater 1
Extreme than Earth .
temperature [\ @ )

= Unsolved

seismo surface wind
meter

-60~20°C

The key is wind shelte
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Comparison of convection with Arrhenius viscosity
and exponential viscosity: application to initiation
of plate tectonics

Teresa Wong and Slava Solomatov, Washington University in St. Louis, St. Louis, MO, USA
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How accurate is Frank-Kamenetskii approximation in
predicting the lithospheric failure and subduction initiation?



Implications of the lopsided growth for the viscosity of the Earth's inner core
Mizzon, H, hugau.mizzon@irap.omp.eu, Monnereau, M, marc.monnereau@irap.omp.eu

IRAP, Toulouse university, Toulouse, France

Two main seismic features characterize Earth's inner core: a North-South polar anisotropy and an
East-West dichotomy of P-wave propagation properties (velocity and attenuation). Anisotropy is
expected if shear deformation is induced by convective motions. However, translation has recently
been put forward as the dominant mode of convection of the inner core (1, 2). Combined with a simple
diffusive grain growth model, this mechanism is able to explain the observed seismic dichotomy, but
not the bulk anisotropy. The source of anisotropy has therefore to be sought in the shear motions
caused by higher modes of convection. Using a hybrid finite-difference spherical harmonics Navier-
Stokes solver, this study investigates the interplay between translation and convection in a 3D
spherical model. Three parameters act independently: viscosity, internal heating and outer core
convection speed at the surface of the inner core. Particular attention has been paid to the
implementation of realistic thermodynamic exchanges and permeable conditions at the inner core
boundarg. Our numerical simulations show the dominance of pure translation for viscosities higher
than 10%° Pas. Translation is almost completely hampered by convective motions for viscosities lower
than 10'® Pas. Between these bounds, translation and convection develop, but convective
downwellings are restricted to the coldest hemisphere where crystallization occurs. On the opposite
side, shear is almost absent, thereby allowing grain growth. We propose that the coexistence of
translation and convection observed in our numerical models leads to a seismic asymmetry but
localizes deformation only in one hemisphere.

(1) Monnereau et al., Science 2010. (2) Alboussiere et al., Nature 2010.
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An equatorial cross-section of the simulation for a viscosity set to 10"® Pas shows that convective
structures only develop in the hemisphere where iron enters the inner core. The thickness of the
thermal boundary layer (TBL) depends on the orientation of the radial velocity at the ICB: inward
(outward) motion tends to thicken (thin) the TBL. Where the TBL is thin it remains sub-critical which
explains the absence of convective structure in one hemisphere. In the convecting hemisphere,
crystals are deformed and remain small, whereas on the opposite hemisphere, the small strain rate
would allow them to grow, thereby erasing their texture.



We formulated tidal decay lifetimes for hypothetical moons orbiting extrasolar planets with both
lunar and stellar tides. Previous works neglected the effect of lunar tides on planet rotation, and
are therefore applicable only to systems in which the moon's mass is much less than that of the
planet. This work, in contrast, can be applied to the relatively large moons that might be detected
around newly-discovered Neptune-mass and super-Earth planets. We conclude that moons are
more stable when the planet/moon systems are further from the parent star, the planets are
heavier, or the parent stars are lighter. Inclusion of lunar tides allows for significantly longer
lifetimes for a massive moon relative to prior formulations. We expect that the semi-major axis of
the planet hosting the first detected exomoon around a G-type star is 0.4-0.6 AU and is 0.2-0.4 AU
for an M-type star.



How does nonhydrostaticity affect the
determination of icy satellites'
moment of inertia?

-

Peter Gao and David J. Stevenson
California Institute of Technology, USA
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DEEP DENBScE MAGMA
ELEMENTS INTO THE CORE

Chemical reaction
between basal magma and molten core

- Silicon, Oxygen, Sulfur
- heat genic Potassium

into the Core?

Ryuichi Nomura
Tokyo Institute of Technology




The Rotational Period and the Surface Properties of

Phaethon

Sherry Kang-Shian Pan' and Shinsuke Abe'
&R & FTRH B

T Institute of Astronomy, National Central University, 300 Jhongda Road, Jhongli, Taoyuan, 32001, Taiwan

|"|

Introduction Color Information and Classified Type
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The Effect of Lower Mantle Metallisation on the Dynamo Generated Magnetic
Fields of Super Earths

Ryan Vilim, Sabine Stanley, Linda Elkins-Tanton

Recent work has shown that a host of materials commonly thought to be present
in terrestrial planet mantles (e.g. CaSiO3[1], Al2SO3[2], FeO[3]) will conduct
electricity at the conditions present in the lower mantles of large, terrestrial
exoplanets.

A solid, electrically conducting lower mantle layer should have a significant
effect on any dynamo present in the planet, as magnetic field lines should be
simultaneously anchored in the convecting fluid core, and the solid mantle. This
should create a new source of shear for the dynamo to generate magnetic fields.

We use a numerical dynamo model to simulate the dynamo of terrestrial
exoplanets and incorporate a conducting mantle layer. We study the effect the
conductivity of the layer, and the inner core size has on observable field.

In all cases, a conducting lower mantle increases the internal field strength
significantly, due to the presence of a new way to shear magnetic fields in the
core.

We find that the observable effects of a conducting mantle layer are most
pronounced in planets with a large solid inner core, where the observable
magnetic field becomes weaker as the conductivity of the mantle is increased.
Conversely, we find that in models with a small solid inner core the observed
magnetic field becomes modestly stronger in the conducting mantle layer
models.

We will present the results of our models as well as a detailed explanation of the
mechanism behind the observed effects.

[1] Tsuchiya, T. (2011). Prediction of a hexagonal SiO: phase affecting stabilities
of MgSiO3 and CaSiOz at multimegabar pressures. PNAS, 108, 1252-1255

[2] Nellis, W.]. (2011). Metallic liquid hydrogen and likely Al203 metallic glass.
The European Physical Journal Special Topics, 196, 121-130

[3] Ohta, K., Cohen, R. E., Hirose, K., Haule, K., Shimizu, K., and Ohishi, Y. (2012).
Experimental and Theoretical Evidence for Pressure-Induced Metallization in
FeO with Rocksalt-Type Structure. PRL, 108, 026403



Sound velocity of CaSiO, perovskite
under ultrahigh-pressures

« Experimental measurements of

sound velocity under high-pressure.

 Discussions of the structure of the
carth’s mantle.

KUDO Yuki, HIROSE Kei,
Tokyo Institute of Technology




On the Accretion of Atmospheres Onto Super-Earths

ﬁi@ J Yasunori Hori (Collaborators) : M. Ikoma,

 Obsérvatory of Japan (National Astronomical Observatory of Japan) D.N.C.Lin

Two types of close-in Super-Earths found

[(1) high-density (rock/iron) like Mercury & the Earth (e.g.) CoRoT-7b

| (2) low-density comparable to water (e.g) Kepler-11e/f, GJ1214b

\

Accumulation of H-He gas
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The Asymmetric Relationship between the Winter North Atlantic

Oscillation and Precipitation in Southwest China

anlie Xu, Jianping Li, Juan Feng, Jiangyu MV
Institute of Atmospheric Physics, Chinese Academy of Sciences

Asymmetric relationship between NAO and precipitation

The main circulation which influences
the rainfall in Southwest China is the
CAT teleconnection along the subtropical
westerly
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