Evolution of rocky and icy planetary bodies in the Solar System

Francis Nimmo (U. C. Santa Cruz)

Approach & Resources

- Pedagogical, not research
- Generic, not specific, processes
- Order of magnitude arguments (+equations)

Planet formation & accretion: http://www.es.ucsc.edu/~fnimmo/eart290c

Geophysics & heat transfer: http://www.es.ucsc.edu/~fnimmo/eart290q_11

Satellites & tides: http://www.es.ucsc.edu/~fnimmo/eart290q_09

Small *N*, lots of information (e.g. chemistry)

Same processes operating Large *N*, little information (especially for solid bodies!)

Why think about solid bodies?

- Habitability (sigh)
- Their surfaces, interiors, orbits and chemistry give clues to their *history* (and that of the solar system)
- Gas giants (mostly) don't do this

Kepler/ NASA

Present-day = Initial + Subsequent state Conditions Evolution

Outline

I. Accretion (long)

II.Heat Sources (short)

III.Heat Transfer (short)

IV.Tides (long)

Part I - Accretion

- Why is accretion important?:
 - Universal process
 - It sets the initial conditions from which the bodies evolve
 - It can yield diverse outcomes

Kepler/ NASA

Accretion - Topics

- 0. Introduction
- 1. Bulk composition
- 2. Spin/orbit state
- 3. Later events
- 4. Energy delivery (see below)

Resources: J. Chambers, in *Exoplanets*, Sara Seager (ed.), U.Az. Press, 2010
P.J. Armitage, *Astrophysics of Planet Formation*, C.U.P., 2010
A. Morbidelli, in *Solar & Planetary Systems*, French & Kalas, eds., Springer, 2012

Sequence of events

- 1. Nebular disk formation
- 2. Initial coagulation (~10km, ~10⁴ yrs)
- 3. Runaway growth (to Moon size, ~10⁵ yrs)
- 4. Oligarchic growth (to Mars size, ~10⁶ yrs), migration (?), gas loss
- 5. Late-stage collisions (~10⁷⁻⁸ yrs)

Accretion

 $\theta >> 1$: Runaway

 $\frac{dM}{dt} \sim \frac{n\sigma G}{\rho^{1/3} v_{rel}^2} M^{4/3}$

 $\theta << 1$: Oligarchic $\frac{dM}{dt} \sim \frac{n\sigma}{\rho^{2/3}} M^{2/3}$

Accretion slows down once all material in a planet's Hill Sphere r_H has been accreted: $r_H \sim a (M / M_{star})^{1/3}$

Warning!

- Our Solar System does *not* resemble many other planetary systems – high eccentricities & inclinations, "hot Jupiters" etc.
- Intuition developed by studying accretion of our (dynamically "cold") Solar System may not apply to other planetary systems

Late-stage Accretion

- Volatiles arrive late change in oxidation state?
- Chem. evidence (Schonbachler et al. 2010, Rubie et al. 2011)

Ensemble Outcomes

- Stochastic process - diversity
- Some radial mixing
- Close-by gas giants can have a significant effect (e.g. asteroid belt)
- *Last, largest* impacts dominate

Individual Growth History

Planet vs. Satellite Accretion

- Satellites experience larger tides
- Impact velocities are comparable to planets
- Satellites require larger total surface densities (but not all material present at same time)

Consequences of Accretion

- Large amounts of energy delivered for bodies greater than ~ Mars-size (see below)
- Initially homogeneous body differentiates into core plus mantle
- Magma oceans develop, leading to further differentiation (e.g. lunar plagioclase crust)

Core formation chronometry

1. Bulk Composition

- Accretion is *not* 100% efficient!
- Examples: Earth/Moon, Mercury, asteroids . . .
- Chemical evidence? (non-chondritic Earth)

Diverse Outcomes

Not all impacts add mass

• Can generate oddball outcomes (e.g. Mercury)

Debris Disks

• Are some debris disks the result of recent impacts?

10⁶

10

Time (years)

105

10⁸

- Spin *rate* close to breakup (on average)
- Spin *orientation* close to random (Uranus?)
- Are these results due to simplified models?
- Tides can modify subsequently (see below)
- Eccentricities/inclinations
 can be perturbed (but
 larger angular momentum
 budget)

3. Waning Accretion

- Earth suffered declining impact flux:
 - Moon-forming impact (~10% M_E , ~4.4 Ga)
 - "Late veneer" (~1% M_E , 4.4-3.9 Ga)
 - "Late Heavy Bombardment" $(0.001\% M_E, 3.9 \text{ Ga})$
- The LHB may have represented a "spike" due to reorganization of gas giant orbits ("Nice model")
- Consequences for volatiles unclear – addition or blowoff?

Nice Model

See Gomes et al., Nature 2005

Part I (Accretion) - Summary

- Late-stage planetary growth involves collisions between like-size objects
- Collisions are stochastic events diversity
- Accretion is *not* 100% efficient (though it is usually modelled as such)
- Geochemical constraints on growth process exist
- The *last, large* impact determines the initial boundary conditions

Part II – Heat Sources

- Why are heat sources important?:
 - High temperatures cause observable effects (differentiation, melting, dynamos etc.)
 - Initial heating can influence long-term evolution
 - Long-term (Gyr) evolution controlled by balance between heat sources and heat loss

Topics

- 1. Insolation
- 2. Radioactive decay
- 3. Gravitational energy (impacts)
- 4. Tides (see below)
- 5. Induction heating (not covered)

1. Insolation

- Determines surface temperature
- Greenhouse effect, runaways (Venus)
- Lava-ocean planets & "Eyeball Earths"

EARTH

Mass: 6.0 x 10²⁴kg Atmosphere: 0.039% CO₂ Distance from host star: 1AU

EYEBALL PLANET

Mass: ~2.4 x 10²⁵kg Atmosphere: ~20% CO₂ Distance from host star: 0.15AU

1 astronomical unit = 149,598,000 kilometres

Pierrehumbert (2011) and Leger et al. (2011)

- ²⁶Al decay ($t_{1/2}$ =0.7 Myr) is *extremely* energetic
- Planet growth time relative to ²⁶Al decay time matters
- ²⁶Al was definitely present when some asteroids (and perhaps Mars) formed and melted
- K,U,Th provide main long-lived (Gyr) energy source

3. Accretion

• "Onion-shell model", assuming no radiative losses

- CAVEATS!:
- For slow accretion and small impactors, radiation may be important
- Impacts are large, discrete and stochastic, not continuous and small
- Spatial heterogeneity may be important

None the less, Earth-mass bodies almost certainly started life molten

Impacts

- "Small" impacts (very roughly < 1% of target mass) cause local heating
- "Large" impacts have global effects
- *Size spectrum* of impactors is very important

- Temperatures highest near surface
- Melting only at shallow depths for Mars-sized object
- Accretion entirely from small bodies makes *cold* bodies

"Big" Impacts

- Accretion involves collisions between $m = \gamma M$ comparable-mass objects
 - Assume all energy deposited into interior

$$\Delta T \approx 6,000 \text{ K} \left(\frac{\gamma}{0.1}\right) \left(\frac{M}{M_E}\right)^{2/3}$$

Rubie et al. 2007

- This is *averaged* temperature increase
- Heating will in reality be (initially) spatially variable

Magma "sea" readjustment

Tonks and Melosh 1992

- Whether melting occurs depends on both M and γ impactor size spectrum is important
- 0.1 M_E body suffering a single giant impact ($\gamma=0.1$) will be *hot*

- Relative importance of impacts and radioactivity depends on body mass, impactor size and timescale
- Melting unavoidable for Earth-sized objects

Accretion dominates for ~100 Myr

Continuum approximation to discrete, stochastic, spatially variable process!
N-body simulations

• Gravity is the dominant heat source

Differentiation and Core Formation

- Differentiation occurs when temperatures get high enough for melting to occur
- Differentiation releases further potential energy
- Cores of Earth-size bodies start life hot (assuming rapid transport of core material)
- Hot cores are good for driving planetary dynamos (Earth, Mars, Mercury?)
- Differentiation leaves isotopic signatures (Hf/W)
- Similar arguments apply to rock/ice mixtures

Incomplete differentiation (?)

- Titan (likely*) and Callisto (possibly) have not completely differentiated requires low *T*
- This implies they were put together slowly, out of small objects constraint on accretion process

Part II (Heat Sources) - Summary

- Insolation only sets boundary conditions
- Grav. energy depends on size-spectrum of bodies
- Global melting is *inevitable* for Earth-sized objects (magma oceans)
- Radioactivity most important for small objects
- For Earth-mass bodies, two epochs:
 - Early (~100 Myr): accretion dominates
 - Later: long-lived radionuclides
- Melting leads to differentiation (core formation)

Part III – Heat transfer

- Why is heat transfer important?:
 - It controls the duration and magnitude of a body's geological activity (outgassing, dynamo etc.)
 - It can (potentially) be remotely measured

- 1. Magma oceans
- 2. Solid state convection
- 3. Advection (melt)

Resources: Rubie et al., Treatise Geophys., 2007

Magma ocean evolution

- Large bodies started life pervasively molten
- Magma ocean lifetimes highly uncertain:
 - Convective/radiative: few kyr (e.g. Solomatov 2000)
 - Conductive: tens of Myr (flotation crust, small bodies *only*)
 - Thick steam atmosphere: ~100 Myr (Zahnle et al. 2007)
- Is lifetime long or short compared to interval between "big" impacts?
- For how long would the IR emission be visible?
- Magma oceans can produce unstable density structures (subsequent overturn)

Early thick atmosphere?

Zahnle et al. 2007

Mantle convection

Mantle viscosity temperature-dependent $\eta = \eta_0 \exp(-\gamma T)$

$$F_{sl} \sim k \left(\frac{GR\alpha\rho^{2}}{\kappa\eta_{b}}\right)^{1/3} \gamma^{-4/3} \sim 4 \text{ mWm}^{-2} \left(\frac{10^{21} \text{ Pa s}}{\eta_{b}}\right)^{1/3} \left(\frac{\gamma}{0.01 \text{ K}^{-1}}\right)^{-4/3}$$

$$F_{pt} \sim k \left(\frac{GR\alpha\rho^{2}}{\kappa\eta_{b}}\right)^{1/3} \Delta T^{4/3} \sim 150 \text{ mWm}^{-2} \left(\frac{10^{21} \text{ Pa s}}{\eta_{b}}\right)^{1/3} \left(\frac{R}{6000 \text{ km}}\right)^{1/3}$$
Solomatov (1995)
$$\int_{10}^{2} \frac{1}{100} \frac{1}{1500} \frac{1}{1600} \frac{1}{1700} \frac{1}{1800}$$
Mantle temperature, K After Moore, *Icarus*, 2001

Stagnant lid vs. plate tectonics

Low yield strength

High yield

strength

Tackley (2002)

- Yield strength (compared to convective stress)
- Earth vs. Venus water is important!
- What does "yield strength" really mean?

Icy satellite plate tectonics?

Dynamos

- Dynamos (usually) depend on how rapidly heat is being extracted *by the mantle*
- Whether or not plate tectonics operates can control dynamo activity (e.g. Earth vs. Venus)
- Early dynamos (Moon, Mars) are affected by initial hot core
- So initial conditions (accretion) may control dynamo operation
- Mechanically-stirred dynamos? (Dwyer et al. 2011)

Melting

- Advection can be an efficient heat transfer mechanism
- E.g. Io 2 Wm⁻² (!)
- Near-surface melt transfer is macroscopic (e.g. dikes)
- Mantle melt transfer is microscopic (porous flow)
- Dihedral angle matters!

Melting

After Moore, Icarus, 2001

Melting/Density

- Deep mantle melting behaviour controls whether magma ocean solidifies from top or bottom important!
- Melt-solid density contrast controls whether magma can move upwards or not affects e.g. CMB heat flux
- E.g. "Deep magma ocean" on Earth

Labrosse et al. (2007)

Part III (Heat Transfer) - Summary

- Molten or partially-molten mantles cool rapidly
- Solid-state mantles cool slowly
- Mantles spend a long time close to the melting point

Part IV – Tides

- Planetary tides are important for two reasons:
 - We can use observations of tidal effects to constrain the internal structures of planetary bodies
 - Tides play an important role in the orbital (and thermal) evolution of some bodies

Topics

- 0. Introduction
- 1. *k*₂ and *Q*
- 2. Despinning
- 3. Tidal heating
- 4. Inclination and obliquity

Resources: Murray & Dermott, Solar System Dynamics, CUP, 1999

Basics

$$h = na^2\sqrt{1-e^2}$$

Angular momentum per unit mass. Compare with na^2 for a circular orbit

An elliptical orbit has a *smaller* angular momentum than a circular orbit with the same value of *a*

Orbital angular momentum is *conserved* unless an external torque is acting upon the body

H strongly influences tidal *torques* and tidal *dissipation*

Rigidity

- *Reduces* the tidal amplitude
- Gravity competes with rigidity μ :

$$\widetilde{\mu} = \frac{\mu}{\rho g R_s} \sim 0.7 \left(\frac{\mu}{100 \text{ GPa}}\right) \left(\frac{M_E}{M}\right)^{2/3}$$

• E.g. Love number h_2 for a uniform body:

$$h_2 = \frac{5}{2} \frac{1}{(1 + \frac{19}{2}\,\widetilde{\mu})}$$

• Rigidity dominant for small bodies, moderate for Earth-mass bodies, small(?) for larger bodies

Tidal torques on the primary

Torque spins down primary and moves secondary outwards

(Reversed if within synchronous distance – exoplanets!)

The Moon has moved outwards from ~5 R_E to 60 R_E over 4.5 billion years.

The current measured recession rate (4 cm/yr) tells us how large the torques are, and thus how dissipative the Earth is, at present.

Orbital evolution

- (Murray and Dermott 1999)
- Passage through resonance may have led to transient eccentricities and heating
- Note that diverging paths do not allow capture into resonance (though they allow passage through it), while converging paths do.

Tidal torques on the secondary

Tide raised by primary on secondary is large, so torque is large

- Synchronization is *rapid* for close-in objects (see later)
- Rotation period may not *exactly* equal orbit period (see later)
- Even synchronous objects generally experience tides . . .

Diurnal Tides

• From a fixed point *on the satellite*, the resulting tidal pattern can be represented as a static tide (permanent) plus a much smaller component that oscillates (the diurnal tide)

N.B. it's often helpful to think about tides from the satellite's viewpoint

$$H_d = 3eH$$

1. k_2 and Q

• Torques and dissipation both depend on k_2/Q

- Q is ~ number of cycles for energy to dissipate
- Large *Q* means small phase lag/torque (!)
- *Q* depends *strongly* on mechanical properties

Observational constraints

- Earth as a whole has a Q of 12 (oceans)
- The solid Earth is *not* very dissipative ($Q \sim 300$)
- Mars is dissipative (Q~80)
- So is the Moon (Q~30 at tidal periods)
- Io and Enceladus are generating observable heat, so we can infer k₂/Q directly
- Gas giants (Saturn, Jupiter) have astrometrically-determined Q~10⁴-10⁵ (Lainey et al. 2009)
- Q is frequency-dependent!

NASA

Observations of Q

An observational constraint!

• Both k_2 (and Q) have been inferred

Tidal torques

Size of (static) tidal bulge:

Torque on *non-synchronous* satellite by primary:

$$H = h_2 R_s \left(\frac{M}{m}\right) \left(\frac{R_s}{a}\right)^3$$
$$\left\langle T \right\rangle_{ns} \approx \frac{k_{2s}}{Q_s} \left(\frac{R_s}{a}\right)^6 \frac{GM^2}{R_s}$$

 $\langle T \rangle_{synch} \approx \langle T \rangle_{ns} 3e$

Torque on *synchronous* satellite by primary:

Torque *on primary by satellite* can be calculated using symmetry

2. Despinning to synchronous

- Fast for close-in non-synchronous objects
- Subsequent evolution (synchronous) is slower

Non-synchronous rotation

• Torque on a synchronous satellite is given by:

$$\langle T \rangle_{synch} \approx \langle T \rangle_{ns} 3e$$

- This torque should increase the satellite's rotation rate slightly above synchronous (Greenberg & Weidenschilling 1984)...
- ... As long as there are no permanent mass asymmetries
- Potentially *very* important for eccentric close-in exoplanets

3. Tidal Heating

- Diurnal tides deformation -> heating
- Heat output allows k_2/Q determination (~0.01)

Eccentricity Damping

- Energy from orbit, *e* should damp to zero
- *e*-damping time *long* compared to despin time

Resonances

- Eccentricities will damp, unless they are being excited
- *Mean-motion resonances* can excite eccentricities:

One of the conjunctions occurring due to the Laplace resonance. Note that there is never a triple conjunction.

- These ultimately involve transfer of (rotational) angular momentum from the primary to the secondaries
- In steady-state (de/dt=0), the dissipation rate in the secondaries depends only on k_2/Q of the *primary*

$$\dot{E}_{steady} \sim n \frac{k_{2p}}{Q_p} \left(\frac{R_p}{a}\right)^6 \frac{Gm^2}{R_p} \sim n \left\langle T \right\rangle_{ns}$$

A possible observational constraint . . .
Feedbacks and coupling

- Dissipation in primary increases eccentricity
- Dissipation in satellite decreases eccentricity
- Heat transfer, dissipation and *e*-damping are coupled, because *Q* is strongly temperature-dependent
- *Complex* (periodic?) behaviour can result

- Inclination damping is slow $\frac{1}{i}\frac{di}{dt} = \frac{1}{4a}\frac{da}{dt}$ $\frac{da}{dt} = \frac{2a^2}{GMm}\dot{E}$
- $\tau_{despin} \ll \tau_{ecc} \ll \tau_{inc}$
- Many satellites occupy a Cassini state, in which the obliquity is controlled by the inclination

Obliquity tides & heating

- Bulge moves "up-and-down", rather than "side-to-side"
- Otherwise heating effect same as eccentricity tides:

$$\dot{E} \sim \frac{k_2}{Q} \frac{G^{3/2} \rho_p^{5/2}}{\rho_s^{5/3}} \left(\frac{a}{R_p}\right)^{-15/2} m^{5/3} \theta^2$$

- Crucial distinction: obliquity damps *much more slowly* than eccentricity (because controlled by inclination)
- So obliquity tides can be a good long-term source of heat for bodies in Cassini states (within limits – see Fabrycky et al. 2007)

Summary

- Tides depend strongly on a/R_p important for our satellites and many exoplanets
- Tidal processes happen at different rates:

$$\tau_{\text{despin}} \ll \tau_{\text{ecc}} \ll \tau_{\text{inc}}$$

- Tidal heating important in our solar system and likely elsewhere (resonances, inclinations)
- Orbital observations can constrain k_2 etc.
- Coupling between thermal and orbital evolution complicated problem . . .
- . . . But may allow us to use orbital observations to constrain interior state, or vice versa

What have we learnt?

- Late-stage impacts: generate initial diversity; dominate the thermal budget for ~100 Myr
- Tides and radioactivity: longer-term energy sources
- Planets start hot; stay "slightly molten" for Gyrs
- Orbit-interior coupling: challenge and opportunity

Lessons

- Observations of exoplanets will be limited, but:
 - Young solid planets are good targets (luminous)
 - Bulk densities may be diagnostic of impact history
 - Tidal/interior coupling (e.g. HATP-13)
 - Likewise atmosphere/interior coupling
- Solid bodies are complex systems which defy simple predictions (Earth vs. Venus, Mimas vs. Enceladus)
- Chemistry helps! (in this Solar System)
- Our Solar System is likely *not* typical biases

Eccentricity damping

• Damping releases a lot of energy:

$$\frac{\Delta E_{ecc}}{E_{grav}} \sim 0.3 \left(\frac{M / m}{10^4}\right)^{2/3} \left(\frac{10}{a / R_p}\right) \left(\frac{\Delta e}{0.1}\right)^2$$

Planetary Growth & Accretion

- Early growth from dust/gas to ~ 1 km (e.g. Weidenschilling 1997)
- Occurs over $\sim 10^4$ yrs at 1 AU
- Runaway growth (e.g. Wetherill & Stewart 1989)
- $dM/dt \sim M^{4/3}$
- Terminates when $v \sim v_{esc}$, ~10⁵ yrs at 1AU
- Oligarchic growth (e.g. Kokubo & Ida 1998)
- $dM/dt \sim M^{2/3}$
- Terminates at ~0.1 M_E , ~10⁶ yrs at 1 AU
- Late-stage accretion (e.g. Agnor et al. 1999)
- Stochastic, large impacts, 10⁷-10⁸ yrs

References (1)

- •Agnor et al., 1999: On the Character and Consequences of Large Impacts in the Late Stage of Terrestrial Planet Formation, Icarus 142, 219-237
- •Armitage, P.J., 2010: Astrophysics of Planet Formation, C.U.P.
- •Asphaug et al., 2006: Hit and run planetary collisions, Nature 439, 155-160
- •Asphaug, Ann., 2009: Growth and evolution of asteroids, Rev. Earth Planet. Sci. 37, 413-448
- •Barr and Canup, 2010: Origin of the Ganymede-Callisto dichotomy by impacts during the late heavy bombardment, Nature Geosci. 3, 164-167
- •Batygin et al., 2009: Determination of the Interior Structure of Transiting Planets in Multiple-Planet Systems, Ap. J. L. 704, 49-53
- •Bottke et al., 2010: Stochastic Late Accretion to Earth, the Moon, and Mars, Science 330, 1527-1530
- •Chambers, J., 2010: in *Exoplanets*, Sara Seager (ed.), U.Az. Press
- •Dwyer et al., 2010: Erosion During Accretion: Consequences for Planetary Iron-Silicate Ratios and Tungsten Isotope Anomalies, LPSC 41, 2271
- •Dwyer et al., 2011: A long-lived lunar dynamo driven by continuous mechanical stirring, Nature 479, 212-214
- •Fabrycky et al., 2007: Cassini States with Dissipation: Why Obliquity Tides Cannot Inflate Hot Jupiters, Ap. J. 665, 754-766

References (2)

•Gomes et al., 2005: Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets, Nature 443, 466-469

•Greenberg and Weidenschilling, 1984: How fast do galilean satellites spin?, Icarus 58, 186-196

•Gribb and Cooper, 1998: Low-frequency shear attenuation in polycrystalline olivine: Grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology, JGR 103, 27267-27279

•Jackson and Wyatt, 2012: Debris from terrestrial planet formation: the Moon-forming collision, MNRAS (submitted)

•Kleine et al., 2002: Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry, Nature 418, 952-955

•Kokubo and Ida, 1998: Oligarchic growth of protoplanets, Icarus 131, 171-178

•Labrosse et al., 2007: A crystallizing dense magma ocean at the base of the Earth's mantle, Nature 450, 866-869

•Lainey et al., 2009: Strong tidal dissipation in Io and Jupiter from astrometric observations, Nature 459, 957-959

•Leger et al., 2011: The extreme physical properties of the CoRoT-7b super-Earth, Icarus 213, 1-11

References (3)

- •Moore, 2001: NOTE: The Thermal State of Io, Icarus 154, 548-550
- •Morbidelli, A., 2012: in Solar & Planetary Systems, French & Kalas, eds., Springer
- •Murray & Dermott, 1999: Solar System Dynamics, C.U.P
- •Nimmo and Stevenson, 2000: Influence of early plate tectonics on the thermal evolution and magnetic field of Mars, JGR 105, 11969-11979
- •O'Brien et al., 2006: Terrestrial planet formation with strong dynamical friction, Icarus 184, 39-58
- •Ojakangas and Stevenson, 1986: Episodic volcanism of tidally heated satellites with application to Io, Icarus 66, 341-358
- •O'Neill & Nimmo, 2010: The role of episodic overturn in generating the surface geology and heat flow on Enceladus, Nature Geosci 3, 88-91
- •Pierrehumbert, 2011: A Palette of Climates for Gliese 581g, Ap. J. L. 726, L8
- •Raymond et al., 2006: High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics, Icarus 183, 265-282
- •Rubie et al., 2007: Formation of the Earth's core, Treatise Geophys. 9, 51-90
- •Rubie et al., 2011: Heterogeneous accretion, composition and core-mantle differentiation of the Earth, EPSL 301, 31-42

References (4)

•Schonbachler et al., 2010: Heterogeneous Accretion and the Moderately Volatile Element Budget of Earth, Science 328, 884-887

•Solomatov, 1995: Scaling of temperature- and stress-dependent viscosity convection, Phys. Fluids 7, 266-274

•Solomatov, 2000: in Origin of the Earth and Moon, Canup and Righter, eds., U. Az. Press, 323-338

•Squyres et al., 1988: Accretional heating of the satellites of Saturn and Uranus, JGR 93, 8779-8794

•Sullivan et al., 1998: Episodic plate separation and fracture infill on the surface of Europa, Nature 391, 371-373

•Tackley, 2000: Mantle Convection and Plate Tectonics: Toward an Integrated Physical and Chemical Theory, Science 288, 2002-2007

•Tonks and Melosh, 1993: Magma ocean formation due to giant impacts, JGR 98, 5319-5333

•Weidenschilling, 1997: The Origin of Comets in the Solar Nebula: A Unified Model, Icarus, 127, 2, 290-306

•Wetherill, G. W. and Stewart, G. R., 1989: Accumulation of a swarm of small planetesimals, Icarus, 77, 330–357

- •Winn and Holman, 2005: Obliquity Tides on Hot Jupiters, Ap. J. 628, L159-162
- •Zahnle et al., 2007: Emergence of a Habitable Planet, Space Sci. Rev. 129, 35-78