Planetary Seismology and Geophysics

Philippe Lognonné
Institut de Physique du Globe de Paris
Université Paris Diderot
France
What can we get from geophysical exploration and sounding of a planet other than Earth?

- A complete illustration with the Moon

What can we imagine from geophysical exploration and sounding of a planet other than Earth?

- Dreams for Mars, the Moon and Venus...
In situ geophysical exploration

- Goal of in situ geophysical exploration is to determine the Internal structure of a planet
- Internal structure is
 - Thermodynamical state (pressure and temperature)
 - Mineralogy
- The approach is based
 - On geophysical methods determining the profile with depth (or the 3D models, for the earth case) of geophysical parameters such as
 - Seismic velocities
 - Shear modulus
 - Density
 - Electrical conductivity
 - For subsurface, permittivity
 - On remote sensing, in situ and sample analysis of the crustal radioactive material PLUS situ heat flow measurement to get the heat (and temperature) surface budget
 - On laboratory and theoretical studies determining the dependence of these geophysical parameters with respect to temperature and mineralogy (PLUS thermal evolution models)
 - On mineralogical and geochemical analysis constraining directly or indirectly the mineralogy with depth
• A geophysical field must penetrate in the planet, must be reflected/transmitted and then recorded
 – Magnetic sounding (electrical conductivity)
 – Seismic sounding (seismic velocities, seismic attenuation)
 – Electro-magnetic sounding (permittivity, electrical conductivity)

• A geophysical signal must be produced by the planet with amplitude depending on its properties with depth
 – Gravity (density)
 – Heat flux (temperature, radioactivity, thermal conductivity)

• An external force deform the planet with a response depending on its properties with depth and the shape (or deformations) of the planet is recorded
 – Tidal deformation, Precession, nutation, etc (density and elastic modulus)
 – Plate flexure (density, elastic thickness)

• In planetology, data are generally limited…. All sources of information must be used
What is the mineralogy, structure and temperature?

Mantle seismic velocities versus Mantle iron content
(Mocquet et al., 1996)

Core density versus core composition
(Bertka and Fei, 1998)

Mantle electrical conductivity versus electrical conductivity
(Xu et al., 1998)
Magnetic sounding

• Principle:
 – An external, time dependant, magnetic field penetrates in an planet
 – Time variation of the magnetic field inside the planet generates currents in the conductive areas canceling partially the field
 – The induced magnetic field is measured by magnetometers

• Limitation
 – Magnetic field is diffusing inside the body
 – Only long periods magnetic field (hours) are sounding deep
 – Diffusion makes the reconstruction of discontinuities difficult

• Success
 - Detection of highly conducting part of a planet (iron metallic core, low velocity zone in a mantle associated to partial melting, liquid in the crust or below a crust)

• Sources
 - Moon: Magnetic field variations associated to the displacement of the Moon in the Earth magnetosphere
 - Moon: Magnetic field variations associated to the solar wind
 - Jovian satellites: Magnetic field variations associated to the tilted rotating Jovian magnetosphere
Seismic sounding

• Principle
 – Use active (impactors, explosive) or passive (quakes, meteorite impacts, crack) seismic sources
 – Record and analyse the seismic signals

• Key dates
 – Earth:
 • Von Reben Paschwitz, 1889, first signal
 • Oldham, 1906, discovery of the core
 • 1960, discovery of the normal modes
 • 1980+ Tomographic models (i.e. details of a few %)
 – Sun:
 • Leighton et al., 1962, discovery of the normal modes
 – Moon:
 • Latham et al., 1969, Apollo 11, first records and deep moonquakes
 – Jupiter:
 • Hammel et al., 1995, observation of Atmospheric Tsunamis
 – Mars:
 • Anderson et al., 1976, First installation of seismometer, single observation of a «quake» possibly not associated to wind burst...
The interior structure of the Moon

What did seismology and geophysics?

with contributions of
Mark Wieczorek, Jeannine Gagnepain-Beyneix, Tamara Gudkova, Catherine Johnson, Taichi Kawamura and other
What might the interior of the Moon look like?

A few ideas and simple observations
The origin of the Moon: The first 24 hours

A Mars-sized object is postulated to have collided with the Earth 4.5 B.y.a.

The material put into circum-terrestrial orbit re-accretes to form the Moon on the time scale of about 1 month to 100 years.

As a result of the energy liberated during the impact, the energy associated with re-accretion, and the short re-accretion time scales, the Moon could have formed completely molten.

Canup and Asphaug (2001)
Crystallizing a magma ocean could have given rise to a layered mantle. The cumulates would have been gravitationally unstable and might have overturned.
Asteroidal and cometary impact events excavated deep into the crust. Large lateral variations in crustal thickness might be expected.
Almost all volcanic flows erupted on the near-side. Are there large variations in composition (i.e., heat producing elements) between the two hemispheres?
Geophysical investigations of the lunar interior

The Crust
Composition, average thickness, lateral variations in thickness, magnetization.

The Mantle
Composition, layering, lateral variations in composition, temperature.

The Core
Composition, size, geodynamo.

Gravity
Crustal thickness variations, time variable gravity signatures related to the tides and core.

Seismology
Crustal thickness, seismic discontinuities in the mantle, core size.

Magnetics
Crustal magnetizations, electrical conductivity of the mantle and core.

Lunar Laser Ranging
Energy dissipation in the mantle (Q) and at the core-mantle boundary.

Heat flow
Distribution of heat producing elements in the crust and mantle.
Gravity

\[g(r) = \nabla U(r) \]

\[U(r) = \int_V \frac{G \rho(r')}{|r - r'|} \, dV' \]

The gravity field depends upon the distribution of mass within the planet.
1. The frequency of radio signals transmitted by a spacecraft is doppler shifted according to the relative velocity.

2. The time-of-flight of the radio signal is related to the distance between the antenna and spacecraft.

These two measurements are used to reconstruct the orbit of a spacecraft, and the “residuals” are modeled as spatial variations in the gravity field of the planet.

No data is available over the far-side hemisphere of the Moon when using a single satellite!
4-way tracking using two satellites has obtained data over the far-side hemisphere for the first time.
Radial Gravity Anomaly (mgals)

-300 -200 -100 0 100 200 300

Mascon with mare basalts
Mascon with no obvious mare

Oceanus Procellarum

South Pole-Aitken

Namiki et al, 2009
Large impact events excavated deep into the crust (and mantle?).

Ishihara et al, 2009

South Pole-Aitken
Tycho Crater: 85 km diameter

The central peak could represent materials derived from about 10 km below the surface.

©JAXA/SELENE
Structure of lunar impact basins

Hikida and Wieczorek (in press)
Tracking between two satellites will be obtained over the entire surface of the Moon, similar to the current Earth mission GRACE.
Seismology

\[V_s = \sqrt{\frac{\mu}{\rho}} \]

\[V_p = \sqrt{\frac{K + \frac{4}{3} \mu}{\rho}} \]

Seismic velocity depends upon both composition and temperature.
The ALSEP Network

The Apollo Lunar Surface Experiment Packages (ALSEP) operated concurrently from ~1972 to mid-1977.

The ALSEP seismic network covered only a small portion of the near-side hemisphere.
Characteristics of moonquakes

~7000 deep moonquakes originating from about 300 distinct source regions that are correlated with the tides.

~1700 meteoroid impacts.

9 artificial impacts.

28 shallow “tectonic” moonquakes. (Most energetic, having magnitudes up to 5).

Picking P and S first-arrival times is subjective; uncertainties can be up to 10 seconds.
But very small amplitudes....

Lognonné and Johnson, 2007
Lunar specific seismic events

• Deep Moon quakes (Quakes occurring at the same locations)

• Impacts (on the Earth, most of the impacting meteorites are burned in the atmosphere)
Deep moonquakes

- Number and amplitude of quakes is related to the amplitude of tide
- About 50 active faults detected
- Quakes occur at the same fault regularly but with very low amplitudes, with ground displacement of a few Angströms at 2 sec (0.5 10^{-9} ms$^{-2}$ of ground acceleration)
Figure 4. (a) Occurrence times of deep moonquakes plotted on the Earth-Moon distance curve. The green (blue) stars are used for events occurring when the Earth-Moon distance is smaller (greater) than 50% of its maximum excursion from the mean distance. (b) The corresponding amplitudes. (c) The number of moonquakes occurring in a 2 week period centered on any given day. (d) The mean amplitude of all events (red line) in this 2 week period, and the mean amplitude of the smallest 50% of events in the same period (blue line). We note variations in the latter between 0.5 to 1 mm.
• example of two quakes (in 1973 and in 1974) from the same deep focus and their cross-correlation
• cross-correlation provides the time shift necessary to align the arrival times
• stacking can then be done
Deep Moonquake

- example of two quakes (in 1973 and 1974) from the same deep focus and their cross-correlation
- cross-correlation provides the time shift necessary to align the arrival times
- stacking can then be done
Impact of the Apollo 17 Saturn V upper stage (Saturn IVB) on the Moon on 10 December 1972 at distances of 338, 157, 1032 and 850 km from the Apollo 12, 14, 15 and 16 stations, respectively. Amplitudes at Apollo 14 station, 157 km from impact, reach about 10^{-5} m s$^{-2}$

- Known time and location: all arrival times give information on the structure
Diffraction: the modelling challenge!

- The Moon subsurface is highly fractured, as a result of non-resurfacing and of a long impacting history.
- Propagation equation is not valid anymore for waves propagating in the crust and diffusion equation must be used.
- Scattering destroy short period surface waves and is able to transfer energy from P to S waves up to an equipartition given by $E_p = \frac{v_s^3}{v_p^3} E_s/2$, where E_p, E_s are the energy of P and S waves, v_p, v_s are the velocities of P and S waves.

Example

a known artificial impact

2012年7月9日月曜日
• Simple Diffusion theory (Strobach, 1970)

\[e(t) = A^2 q^{\alpha t} \frac{1}{\alpha t} e^{-\frac{1}{\alpha t}} \]
Excitation differences between the LEM and S4B impacts
A signature of a different diffusion regime?
Modeling without the diffracted surface waves

Fig. 1: Apollo 14 SIV/B impact site, images taken from [4]

Fig. 261B

Artificial impacts - Z component - flat mode

- data 691120-S12
- data 710207-S14
- data 710729-S12
- data 710729-S14
- data 710803-S15
- data 721210-S12
- data 721210-S15
- data 721210-S16
- synthetic 691120-S12
- synthetic 710207-S14
- synthetic 710729-S12
- synthetic 710729-S14
- synthetic 710803-S15
- synthetic 721210-S12
- synth 721210-S15

second

0 2000 4000 6000
Impacts

Impacts DO not generate high seismic frequencies!

![Diagram showing frequency vs. power spectrum for different events.](image)
Impacts DO not generate high seismic frequencies!
Impacts

Impacts DO not generate high seismic frequencies!
Why?

Power Spectrum (m/√Hz)

Impact SIVB

Shallow Event: 1975/01/03 01:41

Apollo 14 SIVB impact crater

100 m
- Seismic source must take into account both the ejecta and the formation time of the crater
 - Ejecta mass are much larger than impactor mass
 - Momentum of the ejecta is significant and increase the force
 - Formation time leads to cutoff in the 1Hz-10hz range

\[f_0(t) = (mv - P_{eject})\delta(t) \]

\[f(t) = f_0(t) \ast g(t) \]
Ejecta amplification

Ejecta mass and momentum

Ejecta seismic amplification
3 large impact

<table>
<thead>
<tr>
<th>Date</th>
<th>I (kg m/s)</th>
<th>mv_M (kg m/s)</th>
<th>Mass (10^3 kg)</th>
<th>Diameter of meteoroids (m)</th>
<th>Crater diameter (m)</th>
<th>Crater depth (m)</th>
<th>Crater formation time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Jan 1976</td>
<td>5x10^8</td>
<td>(2.9-3.6)x10^8</td>
<td>15-18</td>
<td>2.1-2.3</td>
<td>52-62</td>
<td>14-17</td>
<td>3.0-3.3</td>
</tr>
<tr>
<td>25 Jan 1976</td>
<td>8x10^8</td>
<td>(4.7-5.7)x10^8</td>
<td>24-29</td>
<td>2.5-2.6</td>
<td>60-70</td>
<td>16-19</td>
<td>3.2-3.5</td>
</tr>
<tr>
<td>14 Nov 1976</td>
<td>9x10^8</td>
<td>(5.3-6.4)x10^8</td>
<td>27-32</td>
<td>2.6-2.7</td>
<td>61-73</td>
<td>17-20</td>
<td>3.3-3.6</td>
</tr>
</tbody>
</table>

2012年7月9日月曜日
What can be done?

- Like on Earth?
- Interior models with travel times to invert
 - crust
 - mantle
 - core
 - 3D lateral variation, tomography....
Example of arrival time determination

- In many cases, diffraction is making the determination of arrival times difficult, with error up to 10 sec (mean error is about 2 s)
Rays sampling

- recording events with different epicentral distances give access to the structure with depth
- the inverted model is however not a mean model of the planet, but a mean model of the area where the network is deployed

All ray paths available in the Moon. Blue is for deep events, red for impacts, green for superficial moonquakes.
Principle of the inversion

Seismic data, i.e. arrival times at the stations

Source parameters, i.e. position and times of the quakes

Model parameters, i.e. P and S seismic velocities with depth
• Source localisation is done iteratively in the inversion: for each new structure new model, a new localisation of the sources is done and then used for next inversion of structure.
Principle of the inversion

Seismic data, i.e. arrival times at the stations $N \times 6$

- N is the number of quakes
- The seismic model must be limited to depth seen by the seismic rays
- If errors are high, an oversampling is mandatory to reduce the impact of errors on the data
- Number of layers with V_p and V_s inverted is therefore $N_l << N$

Model parameters, i.e. P and S seismic velocities with depth $< 2N$

Source parameters, i.e. position and times of the quakes $N \times 4$
Inversion in the Appolo case

Seismic data, i.e. arrival times at the stations Nx6

Source parameters, i.e. position and times of the quakes Nx4

Model parameters, i.e. P and S seismic velocities with depth < 2N

- Practically, in total 319 P & S arrival time data where used to constrains 59 seismic sources, including 185 source parameters and 134 degree of freedom available for internal structure
- Mean error is 2 sec for arrival times
Fig. 3. Example of arrival time pickings for deep focus A33. The index 0, 1, 2 and 3 correspond respectively to uncertainty about 1, 3, 10, 30 s.
• 2 possible inversion strategy
• Inversion with a limited number of layers (typically about 5-10)
 – Inverted parameters are not the true velocities but the mean velocities in a layer
 – Some error is done in the theory
 – When sdata > stheory, the error on the inverted models is improved
• Inversion with a large number of layers (typically 50)
 – Inverted velocities have error directly related to the mean quality of data
Inversion results

- right: highly layered model (Khan et al., 2000, 2002)
- left: weakly layered model (Lognonné et al., 2003)
Results: Thickness of the crust

Toksöz et al. (1972)
~60 km

Khan et al. (2000)
45±5 km

Khan and Mosegaard (2002)
38±3 km

Lognonné et al. (2003)
30±3 km

Each study used different seismic events, seismic arrival times and analysis techniques... and thickness do not always fit the gravity one.
Joint crustal inversion: gravity plus seismic

40±5 km
Why so much differences?

- Seismology is mainly sensitive to the travel times, which means integration of the slowness along ray.
- Gravity does not constrains the mean crustal thickness if the mass of the mantle is not known.
- Gravity lateral variation is to first order sensitive to the surface density.

Figure 5. A smoothed version of 10 samples from the posterior distribution, each one obtained by sampling a different extremum in the model space. The models shown here emphasize only the crustal and upper mantle part. The three models numbered 1–3 have been taken as examples of models which individually highlight seemingly different structures but nonetheless are models that all produce a fairly large likelihood value, that is, produce a good fit to the observed data (see Table 1).

Khan et al, 2002
Real differences?

- Seismology is mainly sensitive to the travel times, which means integration of the slowness along ray.

- Typical error ± 5km, ±1sec

Figure 5. A smoothed version of 10 samples from the posterior distribution, each one obtained by sampling a different extremum in the model space. The models shown here emphasize only the crustal and upper mantle part. The three models numbered 1–3 have been taken as examples of models which individually highlight seemingly different structures but nonetheless are models that all produce a fairly large likelihood value, that is, produce a good fit to the observed data (see Table 1).

Khan et al, 2002

Chenet et al, 2006

Khan et al, 2002

(1700 km, 6.65sec)

(1702 km, 7.04sec)

- Khan et al, 2002

- Chenet et al, 2006

- Typical error ± 5km, ±1sec
Inversion with some 3D effects: crustal structure

- The crustal structure leads to conversion and reverberations
 - Primary wave arrival \(\sim P(t-t_p) \times T \)
 - \(P(t) \) is the amplitude in of the P wave below the crust, depending on the mantle propagation and of the seismic source, \(T \) the transmission coefficient to the crust and \(t_p \) the transmission time through the crust
 - Converted wave \(\sim P(t-t_c) \times C \)
 - \(C \) is the transmission coefficient of the crust from Primary wave to converted wave and \(t_c \) the transmission time through the crust
Receiver function method

• 1st step: make the Fourier transformation of the arrivals
 – Primary wave arrival Fourier Transformation $\sim T_P(\omega) \exp(i\omega t_p)$
 – Converted wave $\sim C_P(\omega) \exp(i\omega t_x)$

• 2nd step: perform the deconvolution of the converted wave by the primary wave in frequency domain
 – $R(\omega) = \frac{[T_P(\omega) \exp(i\omega t_p)]}{[C_P(\omega) \exp(i\omega t_x)]} = T/C \exp(i\omega(t_p - t_x))$

• 3rd step: perform the inverse Fourier transformation
 – $R(t) = T/C \delta(t_p - t_x)$
Deconvolution process

A

T
R
Z
Y
X

seconds

B

T
R
Z
Y
X

seconds

C

D

\hat{T}
\hat{R}
\hat{Z}

S

450.0
400.0
350.0
300.0

450.0
400.0
350.0
300.0

450.0
400.0
350.0
300.0

450.0
400.0
350.0
300.0

450.0
400.0
350.0
300.0
Improving the signal to noise ratio with stack
Moon receiver function (Apollo 12 site)

- S->P conversion at the Base of the crust
- Subsurface/regolith delay and reverberation

- S-P delay is equal to
- And therefore does not give a unique solution
- Other informations are needed (amplitude conversion coefficient)

\[\Delta t = t_s - t_p = D \left(\frac{1}{v_s} - \frac{1}{v_p} \right) \]
Moon receiver function (Apollo 12 site)

Model C (this study)

Data

Vinnik et al. (2001)

30 km crust

60 km crust
Surface fracturation?

- Many recent evidence for higher porosity
- Possibly a key issue for more precise crustal estimation

1 km vp at least down to 3.3 km at Apollo17, i.e. 2.4 km/s (Nakamura, 2011)

Huang and Wieczorek, 2012

Ishihara et al, 2009

constant mass
3D crustal structure

- The structure sampled by the Apollo seismic network is not providing a mean Moon model but a regional model associated to the Procellarum Kreep Terrane
 - Thiner crust
 - Probable High Th content
Down to Moho?

Radius (km)

Velocity (km.s\(^{-1}\))

1750

1738 Km (surface)

S to P conversion
28 km

Vs

Vp

4.50 ± 0.07 km.s\(^{-1}\)

7.63 ± 0.05 km.s\(^{-1}\)

a posteriori Probability
Joint crustal inversion: seismic plus mineralogy

- Use lunar samples to fix the mineralogy of the upper mantle
- Use the upper mantle seismic velocity as «thermometer» to constrain the thickness of the radioactive heating crust
Further effects: Lateral density variations

- Typical lower crustal density is 2900-3040 kg/m³
- Typical upper mantle density is 3300-3400 kg/m³
- Difference is therefore ~12%
- 5 km of crustal thickness increase (negative mass) is therefore equivalent to crustal porosity increase by 6% in the upper 10 km

- Positive Thermal crustal-upper mantle feedback

- negative crustal mass
 - increased porosity (better isolation)
 - Larger thickness (more heating)

- negative mantle mass
 - hotter upper mantle
Is there a seismic discontinuity in the mantle?

Nakamura et al. (1982), Lognonné et al. (2003)
Maybe: ~500 km

Khan and Mosegaard (2002)
Yes: 550 km depth

Khan et al. (2007)
NO? or 850 km depth?

Each study used different seismic events, seismic arrival times and analysis techniques...
Direct inversion of seismic velocities

- Nakamura, 1983
- Goins, Dainty and N. Toksöz, 1981
- Kuskov et al., 2002

Khan et al, 2000
Khan and Mosegard, 2002

Direct inversion of mineralogy

Khan et al., 2006
Middle mantle is poorly resolved.
Sounding the Lunar core

- What we knew 2 years ago
 Density and moment of inertia
 Magnetic sounding

- What we know today
Coffee break
Magnetic Induction

\[\nabla^2 \mathbf{B} = \mu \sigma \frac{\partial \mathbf{B}}{\partial t}, \]

What is the (conductive) size of the Lunar Core?
What is the mantle conductivity?
1997: Moon sounding with the Earth
Moon's Orbit

Sun

Earth

Earth's magnetotail

solar wind

magnetic bow shock
The most precise measurements of the Moon’s field are made on the hemisphere that is partially shielded against the solar wind, and for about 2 days per month when the Moon passes through the Earth’s geomagnetic tail lobe.
Magnetic field

Satellite Lunar prospector

1997
Lunar prospector magnetic sounding

• Primary magnetic field is the magnetic field of the geotail (12-16nT)
• Magnetic field is slightly expelled from the iron moon core
• A low altitude orbiting satellite with magnetometer (Lunar Prospector) measure the small (0.4 nT) perturbation
• Best fit is achieved with a metallic core of 400 km
Lunar prospector magnetic sounding

- Primary magnetic field is the magnetic field of the geotail (12-16nT)
- Magnetic field is slightly expelled from the iron moon core
- A low altitude orbiting satellite with magnetometer (Lunar Prospector) measure the small (0.4 nT) perturbation
- Best fit is achieved with a metallic core of 400 km
The electrical conductivity profile can be obtained by measuring the inducing field from orbit and the resulting magnetic field on the surface.

Inferred temperature profile depends upon a limited number of electrical conductivity measurements.
Other temperatures

Khan et al, 2006 (direct inversion of seismic data)
Khan et al, 2007 (direct inversion of magnetic data)
Other temperatures

Khan et al, 2006 (direct inversion of seismic data)

Khan et al, 2007 (direct inversion of magnetic data)
Other temperatures

- Khan et al, 2006 (direct inversion of seismic data)
- Khan et al, 2007 (direct inversion of magnetic data)
Tidal stresses and core size

- Focal mechanism of the deep moonquakes remains to be better known, but liquid core provides maximum stress at the deep moonquake depth.
- Large core needs a high (and maybe too high) Vs velocity in the lower mantle to match with the k_2 value.
- Temperature is above the maximum temperature of subduction zones but in a possible dryer mantle than subduction zone or Earth upper mantle (Qs ~300 on the deep Moon, Qs~150 on Earth).
Lunar Laser Ranging

Irregular rotational signals are indicative of internal dissipation of energy.
Lunar Laser Ranging can determine the Earth–Moon distance to an accuracy of ~2 cm.

By using ranges to several stations, it is possible to reconstruct the orientation of the Moon.
Rotational signals

Optical librations are caused by the Moon’s eccentric and inclined orbit.

Physical librations are caused by torques on the solid body of the Moon by Earth’s gravity field. Velocity differences at the core–mantle boundary, as well as dissipation within the solid body, give rise to a distinctive rotational signatures.

The Moon possesses a molten core. Dissipation of energy is also occurring deep in the solid portion of the lunar mantle (Q=37–60). Is the deep mantle partially molten?
Core Seismic Phases

Weber et al, 2011
Garcia et al, 2011
Methodology

- Core phases are weak signals
 - DMQ stacking + All stations stacks
 - Use of Polarisation filters + Stations corrections
• Clear identification of reflected energy from a 350-400 km radius reflector
Deep interior and state of core

• Upper structure is constrained by seismic data
• Invert only for the structure not resolved by seismic data

Garcia et al 2011:
380 km ± 40 km
5200±1000 kg/m3

Weber et al 2011:
330 km ± 20 km
6200±1000 kg/m3

Crust 40 km (Beyneix et al., 2005)
$\nu = 0.01 \text{ cm}^2/\text{s}$
Heat Flow

\[q = k(T) \frac{dT}{dz} \]

The heat flow depends upon the abundance of heat-producing elements and thermal evolution.
The heat flow was measured at two locations on the Moon: Apollo 15 and 17

Final emplacement of the Apollo 15 heat flow probe
Heat-producing elements are highly concentrated in a small near-side crustal province where the majority of mare basalts erupted.
The heat flow is predicted to be about 3 times higher in the center of the Procellarum KREEP Terrane than in the Feldspathic Highlands Terrane.
Conclusions

What do we know?
And what is the future of lunar geophysics?
Our best guess

Nearside

- Shallow Moonquakes
- Deep Moonquake Source Region
- Anorthositic Crust
- Zone of Partial Melt (Lower Mantle)
- ~350-km radius Fluid Outer Core
- ~160-km radius Solid Inner Core (assuming 10% of the core has crystallized)
- Middle Mantle
- 560 km Discontinuity
- Upper Mantle
- South Pole-Aitken Basin

Farside

Wieczorek et al. (2006)
We need more data!
Several future seismic missions are being investigated.

Penetrators (Japan, UK)

We need global coverage!
10+ stations on both the near- and far-side hemispheres.

Landers (Japan, Europe, China, US)

The activity of deep moonquake nests is correlated with the tides (27 days, 6 years, 9 years, and 18.6 years). We need long time spans of data.

Human (US)
Lunar near Future
Lunar SELENE2 seismometer

• The Seismometer Experiment is composed of:
 – Three Short period seismometers (ISAS, J, N. Kobayashi)
 – Three Very Broad Band seismic sensors (IPGP/CNES, F)
 – An installation and leveling system (MPS, D)
 – An acquisition electronics (ETHZ, CH)

• The seismometer shall be serviced by a survival module
 – Provides power, data storage, communication with Earth
 – Maintain the seismometer in an adequate thermal range
Lunar seismic Seismic Noise

No atmosphere but continuously impacting meteorites…
Impacting rates

- The Moon, as all other planetary or small bodies without atmosphere is impacted continuously by meteorites.
 - Scattering and low attenuation are generating a “long” time diffusion
 - Direction of impacts are given by a priori distribution of NEO in the internal solar system (Bottke et al., 2002)
 - Mass/frequency of impacts are given by different models, but typically 3000/5000 impacts > 1 kg on the Moon
Impact/hum transitions

Maximum amplitudes
Event frequency

Apollo

DU = 5 \times 10^{-10} \text{ ms}^{-2}

VBB:

rms = 5 \times 10^{-11} \text{ ms}^{-2}
Active seismology using impacts

Impact monitoring gives the source position and time of the seismic event, allowing seismic investigations with a single station.
Expected improvement with respect to Apollo will enable new seismic discoveries

- Core phases and core size
- High resolution crustal model from joint Earth/Moon impacts monitoring
- Detailed seismic source dynamics of impacts and DMQ

Yamada et al., 2012
Performances improvements…

Impacts

DMQ
Better detection of core phase...

Body waves amplitudes at 0.1 Hz

Same at 1 Hz – Schickard site at 45S, 55W

Epicentral distance (degree)

Amplitude (m)
Mars seismology: history

- 1975: 2 Viking landers equipped with seismometers. Possible detection of one quake on one lander
- 1996: Failure of the launch of Mars96, with 2 surface stations equipped with BRB Z axis seismometers and 2 penetrators with SP geophones
- 2008: Humbold/ExoMars project is stopped by ESA after phase B
Mars seismology: history

- 1975: 2 Viking landers equipped with seismometers. Possible detection of one quake on one lander.
- 1996: Failure of the launch of Mars96, with 2 surface stations equipped with BRB Z axis seismometers and 2 penetrators with SP geophones.
- 2008: Humboldt/ExoMars project is stopped by ESA after phase B.
The Discovery Insight

• Science
 o InSight (former GEMS) is investigating the interior of an Earth–like planet for the first time.
 o Scientific payload is highly focused on geophysics
 ✓ 3 axis Seismometer
 ✓ Heat flow
 ✓ geodesy experiment
 o Will utilize sophisticated single–station analysis techniques to derive geophysical information from one site on Mars.
 o InSight is a necessary pathfinder for any future Mars geophysical network.

• Mission
 o Low risk development and mature Instruments, Phoenix spacecraft
 o InSight mission is nearly identical to Phoenix from launch to landing and stays within all Phoenix capabilities except mission duration.
 o After a short deployment period, surface operations require very little interaction (Deploy & Forget).

Final NASA decision is expected in about 3 weeks!
Pathway to (science) success

• How can a single lander perform the seismic monitoring of a whole planet:
 ○ Installation and noise of the seismometer will be critical
 ○ What will be the detection threshold and how many quakes can be detected?

• How can single seismic record of quakes can be used to constrain the interior
 ○ How well can be the seismic source and interior structure determined?
Deploying a seismic vault on Mars: why?

- Most of the quality of an Earth seismic station is directly associated to the quality of the seismic vault.
- Most of the Viking seismometer failure was related to the bad installation of the seismometer (on the lander deck, e.g. on a suspension...)
- Most of the success of the Apollo seismometers
Deploying a seismic vault on Mars: how?

• Request a large mass made available by the Phoenix-type lander capability
• Will put the expected direct wind and thermal noise below the capability of space qualified VBB seismometers (see posters 1493 and 2025)
• Will allow to reach the (surface) micro-seismic noise of the planet
Mars Micro-seismic noise estimation

- Can be estimated with GCM and Large Eddies simulation
- Is expected to be below 10^{-9} ms$^{-2}$/Hz$^{1/2}$ 70% of the time (10^3 less than Viking)
- Is expected to reach Apollo level with pressure decorrelation (10x more)

Pressure fluctuation on the ground => ground tilt
Mars Micro-seismic noise estimation

- Can be estimated with GCM and Large Eddies simulation
- Is expected to be below 10^{-9} ms$^{-2}$/Hz$^{1/2}$ 70% of the time (10^3 less than Viking)
- Is expected to reach Apollo level with pressure decorrelation (10 x more)

Pressure fluctuation on the ground => ground tilt
Mars Micro-seismic noise estimation

- Can be estimated with GCM and Large Eddies simulation
- Is expected to be below 10^{-9} ms$^{-2}$/Hz$^{1/2}$ 70% of the time (10^3 less than Viking)
- Is expected to reach Apollo level with pressure decorrelation (10 x more)

Pressure fluctuation on the ground \Rightarrow ground tilt
Mars seismicity

- Seismicity of Mars remains unknown, even if MRO has brought back some indications on present activity with avalanche and fallen boulder (e.g. Roberts et al., 2012)
Seismic targets

- **M~5.5**
 - a few/yr
 - Global

- **M~4.5**
 - ~ 10/yr
 - Global to regional

- **M~3.5**
 - ~100/yr
 - Regional

Plus impacts…
Seismic target #1:

- Normal modes of a 2×10^{17} Nm quake
- "spectroscopy" seismology: does not need the knowledge of the source location
- Will constrain the upper mantle with the normal modes frequency inversion (e.g. PREM on Earth)
Seismic target #2:

- Epicentral distance will be determined from Surface waves arrival of R1, R2
- Most of the error in the Distance will be related to the 3D structure as seen by the surface waves
- Full great circle travel time (e.g. \(T_R = T_{R3} - T_{R1} \)) will be determined from analysis of the largest events (and refined from joint analysis of all events)
- Analysis principle:
 \[
 \frac{\Delta}{\pi a} = 1 - \frac{T_{R2} - T_{R1}}{T_R}
 \]
 \[
 t_{S} - t_{P} = f_1(\Delta, v_s, v_p)
 \]
 \[
 t_{R} - t_{P} = f_2(\Delta, v_s, v_p)
 \]
 \[
 T_R = f_3(f, v_s, v_p)
 \]
- Depends on lateral variations: gives Distance
- Depend on both lateral and depth variations: gives seismic velocity profiles
Typical Signal to noise : Rayleigh

Rayleigh

Overtones

Rms Noise in bandwidth

10^{16} Nm quake, strike/dip/rake 45°/45°/45°, ModelAR

10 km depth
20 km depth
50 km depth
100 km depth

Requirement SW model
Requirement VBBZ rms
Typical Signal to noise : core phase

Core phase (0.1–5 Hz bandwidth) Surface event ($Q_p=800, Q_s=325$)

Expected Distance error ~10%
(less with a priori on crustal lateral variation)
Earth data/Mars Model validation

Body waves non observed due to Earth noise

Mars synt data, $\Delta=90^\circ$

Earth data, 25–50 sec, $Mb=4.2$ $M0=10^{15.35}$ nm, $\Delta=45^\circ$

Noise level $\sim 10^{-9}$ ms$^{-2}$/Hz$^{1/2}$

More in poster 1515
Seismic target #3:

- $10^{14}-10^{15}$ Nm quakes will provide P, S and Surface waves records enabling
 - Regional crustal inversion from surface waves and receiver functions analysis for the 10^{15} Nm quakes
 - Quake location for the $\leq 10^{14}$ Nm quakes
Seismic target #4:

• Seismic signals generated by impacts can be calibrated with Moon Apollo data
 ○ Amplitude must be corrected by the larger a priori mantle and crust attenuation

• Impactor flux can be estimated with Monte-Carlo modeling
 ○ Ground mass/velocity must however be computed with the atmospheric ablation and shielding
About 20 impacts in 1 Mars yrs with S/N > 3 (D < 3000 km)
(16 for D < 2000 km and 4 for D < 400 km)

Seismic SN ~3

Joint MRO/InSight impacts observation will allow location constrained seismic analysis and amplitude constrained impact analysis with science return similar to the artificial impacts of Apollo!
Modeling indicate that a Low noise (e.g. $<10^{-9} \text{ ms}^{-2}/\text{Hz}^{1/2}$) can be reached on Mars.

Such a low noise enable in 0.7 Mars yr:
- > 10 quakes with R3 and core phases
- > 40 quakes with P, S, R1 including > 25 with R2

Such a data set will made possible (with margin of 100%):
- The determination of the absolute crustal thickness to ±10 km
- The determination of the seismic velocities of the upper mantle to ±0.25 km/s
- And the determination of the rate and location of Marsquakes (location within...
Venus Future and remote sensing
Remote sensing planetology
Exemple 1: seismic remote sensing of the Sun

- ESA/NASA spacecraft observation with MDI (Michelson Doppler Interferometer Instrument)
- Sun velocity is measured by using emission of Ni in the photosphere
- 1024x1024 pixels provide the vertical velocity of the Sun every 60 sec with 20 m/s of error

1,400,000 km
Exemple 1: seismic remote sensing of the Sun

- July 9, 1996 solar flare
- Quake equivalent magnitude M=11
- Vertical displacement of about 3 km

A. G. Kosovichev, V. V. Zharkova, Stanford Un.
Exemple 1: seismic remote sensing of the Sun

- July 9, 1996 solar flare
- Quake equivalent magnitude $M=11$
- Vertical displacement of about 3 km

A. G. Kosovichev, V. V. Zharkova, Stanford Un.
Exemple 1: seismic remote sensing of the Sun

- July 9, 1996 solar flare
- Quake equivalent magnitude M=11
- Vertical displacement of about 3 km

A. G. Kosovichev, V. V. Zharkova, Stanford Un.
Exemple 2: seismic remote sensing of Jupiter

- NASA HST, WFC in optical mode
- July 22, 1994 Shoemaker-Levy 9 impact
- Quake equivalent magnitude M=9
- Vertical displacement 100m but with clouds-albedo modification
- No seismic waves observed on ground and space observations
- Tsunami/gravity waves observed

130,000 km

H. Hammel et al, MIT
Generation mechanism of infrasonic waves by seismic waves

Near field: Atmospheric pulse

Far field: Rayleigh wave

Far field:
Rayleigh wave

Earthquake
The network has been working continuously since August 1999, most of M>6.5 earthquakes have been observed.

Seismic ionospheric oscillations detected at Francourville 1999/08–2000/06

Artru et al, 2006

4.6 Mhz, Costa Rica, August 20, 1999

High pass at 200 sec
3D waveform complexity

Chichi earthquake (Taiwan, 1999/09/20, $M_w=7.6$) - vertical velocity m.s$^{-1}$

Doppler 186km synthetic
Doppler 186km data

Doppler 168km synthetic
Doppler 168km data

2012年7月9日 月曜日
Example 3: remote sensing on Earth
Example 3: remote sensing on Earth

Tohoku 11/3/2011 M~9
Example 3: remote sensing on Earth

Example 3: remote sensing on Earth

Ol red line

- 630 nm
- Emission peak at 250-300 km
- quiet night 50-100 Rayleigh

\[O_2 + O^+ \rightarrow O_2^+ + O \]
\[O_2^+ + e^- \rightarrow O + O(^1D) \]
\[O(^1D) \rightarrow O(^3P) + h\nu \]
OI red line

- 630 nm
- Emission peak at 250-300 km
- quiet night 50-100 Rayleigh

\[
\begin{align*}
O_2 + O^+ & \rightarrow O_2^+ + O \\
O_2^+ + e^- & \rightarrow O + O(^1D) \\
O(^1D) & \rightarrow O(^3P) + hv
\end{align*}
\]

Makela et al., 2011
Example 4: Venus?
Example 4: Venus?

- The resurfacing history of Venus provide an average age of 300-500 Myears for most of the planetary surface.
- Rate of volcanism comparable to Earth intraplate activity are found.
- Seismic activity of Venus might generate a few Ms=6 per month.
- And at the surface, pressure is about 90 bar, density of about 60 kg/m³, acoustic velocities slightly higher (410 m/s)… Ideal planet for atmospheric seismology.
Venus Background for atmospheric seismology

- Maximum ionisation in Venus ionosphere is reached at about 140 km, an altitude comparable to HF sounding altitude on Earth

- Ground acoustic jump is much better
 - At the surface, pressure is about 90 bar, density of about 60 kg/m³, acoustic velocities slightly higher (410 m/s)
 - Ground coupling (ρc) is about 60 greater than on Earth
 - One bar level is reached at about 50 km of altitude, after an amplification by about 10 for acoustic waves
 - Acoustic signals from ground are expected to be about 600 times greater at the same altitude and for the same quake (almost 2 magnitudes)
Body waves…. And high altitude dissipation

- Event will be associated to a thermal signal…
- Event characteristic (Garcia et al., 2005)
 Magnitude: 5, 5.5, 6
 Haskel model for rupture and frequency generation
 30 km of focal depth
Ionosphere and remote sensing seismology

- Can be sounded from top only
 - Top side sounder might detect oscillations below 150 km
 - Earth
 - Venus

2012年7月9日 月曜日
Thank you.
References

Charles K. Shearer, C. K., 2006: Thermal and Magmatic Evolution of the Moon, Reviews in Mineralogy and Geochemistry 2006 vol.60 no.1 pp.365-518

Huang, Q. and Wieczorek, M. A., 2012: Density and porosity of the lunar crust from gravity and topography, JOURNAL OF GEOPHYSICAL RESEARCH, Vol.117, E05003, pp.9

Ishihara, Y., 2009: Crustal thickness of the Moon: Implications for farside basin structures, GEOPHYSICAL RESEARCH LETTERS, VOL.36, L19202, PP.4

Makela, H., et al. 2011: Stability of nonstationary states of spin-1 Bose-Einstein condensates, Physical Review A. Atomic, Molecular, and Optical Physics, 84(4): 043646-

Namiki, N., 2009: Farside Gravity Field of the Moon from Four-Way Doppler Measurements of SELENE (Kaguya), Science 13, Vol.323, no.5916, pp.900-905

Roberts, G. P., et al., 2012: Possible evidence of paleomarsquakes from fallen boulder populations, Cerberus Fossae, Mars, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, E02009, pp.17

