VARIABILITY OF ULTRA-LUMINOUS X-RAY SOURCES SOMA MANDAL¹, RANJEEV MISRA² ¹ TAKI GOVERNMENT COLLEGE, WEST BENGAL, INDIA ² INTER-UNIVERSITY CENTRE FOR ASTRONOMY AND ASTROPHYSICS (IUCAA), INDIA

Chandra observations of 17 nearby galaxies were analyzed and 166 bright sources with X-ray counts > 100, were chosen for temporal analysis. Fractional root mean square variability was estimated for the lightcurves binned at ~ 4 ksec and of length ~ 40 ksec. Eight sources (of which three are ultra-luminous X-ray sources (ULX) with unabsorbed luminosity L > 10³⁹ ergs/sec), were found to be variable at a significance level greater than 2-sigma. For six sources the variability is primarily dominated by either a secular change or a single flare like activity while for two sources (one in NGC0628 and the other in NGC1569) the variability is dominated by large amplitude fluctuations. While the source in NGC1569 has a relatively low luminosity of L ~ 10³⁸ ergs/sec, the one in NGC0628 is a unique ULX in the sample. The other two variable ULX have ultra-soft spectra with temperature < 0.3 keV. There are 10 ULX in sample for which the fractional r.m.s variability is constrained to be < 10 %. These result seem to indicate that ULX are typically not highly variable in k-sec timescales, except for some ultra-soft ones. The

uniqueness of the rapidly varying source in NGC0628, which has been compared earlier to the Galactic micro-quasar GRS 1915+105, reveals the rarity of such systems.

What are Ultra-Luminous X-ray Sources?

Point like non-nuclear X-ray sources *****Thought to be X-ray binaries containing black holes ☆L, > 10³⁹ erg/sec above Eddington limit for 10 solar mass black holes)

composite X-ray/optical image of M74(NASA/CXC)

Sample selection, data reduction and analysis

Chandra observation of 17 nearby galaxies were analyzed by using CIAO >166 sources with counts > 100 were chosen for temporal analysis **Extracted lightcurves for time bin of 4 ksec and of** length ~ 40 ksec

>Variance was computed to differentiate the variable and non-variable sources

TABLE 1 Sample Galaxy properties						TABLE 2 Spectral Properties of point sources fitted with the Power-Law model								TABLE 3 Spectral Properties of point sources fitted with the Disk Black Body model							
Galaxy	Distance (Mpc)	ObsID	$T_{exp}(ks)$	$N(\geq 100cts)$		0			(–		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			(~ 1	
NGC0628	9.7	2058	46.16	5	Galaxy	Source Name	R.A.	Decl.	$n_H(10^{22} cm^{-2})$	Γ	$\log(L) \text{ ergs/s} C_{stat}$	d. o. f. F_{var}	Galaxy	Source Name	R.A.	Decl.	$n_H(10^{22} cm^{-2})$	kT_{in} (keV)	$\log(L) \text{ ergs/s}$	C_{stat} d. o). f. F_{var}
NGC0891	10.0	794	50.90	12	MOOIDOO	01	0 00 01 20	04 00 K0 0K	0.01+0.16	0 = -1.6	5 $0.50 $ $r 0.50$	0 1 1 0 1 38	MOOIDOD	01	0 00 01 50	04 00 40 04	0.00+0.06	0.0++0.06	00.00 ± 0.26		0 1 1 0 1 38

References:

- 1. Devi, A. S., Misra, R., Agrawal, V.K., & Singh, K.Y., 2007, APJ, 664, 458, And references therein
- 2. Fabbiano, G. 2006, ARA&A, 44, 323
- 3. Fridriksson, J. K., Homan, J., Lewin, W. H. G., Kong, A. K. H., & Pooley, D. 2008, ApJS, 177, 465
- 4. Kajava, Jari J. E., Poutanen, Juri MNRAS, 398, 1450, 2009
- 5. Miller M. C., Colbert E. J. M, 2004, IJMPD, 13, 1 6. O. Gonzalez Martin, I. Papadakis, P. Reig, and A. Zezas A&A 526, A132, 2011 7. Roberts T. P., 2007, Ap&SS, 311, 203 8. Vaughan, S., Edelson, R., Warwick, R. S., & Uttley, P. 2003, MNRAS, 345, 1271

JSPS-DST Asian Science Seminar : Challenges in Astronomy: Observational Advances , September 26- October 1, 2011 , Hyogo, Japan