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Abstract

Planet Transit observations have revealed a population of Hot Jupiters with unexpectedly large radii. This yet
undetermined physical mechanism seems to be correlated with the average stellar incident flux upon the planet.
Transit observations combined with radial velocity data tell us about the mass and density of these planets,
which in principle constrain the composition. However, for the large-radius planets the composition is difficult
to determine because putting energy into the planet counteracts the effects of heavy elements (“metals”), which
would otherwise shrink a planet.
Fortunately, a sample of transiting planets is now emerging at larger orbital distances and smaller incident fluxes
that seem to be essentially unaffected by this heating mechanism. In this work we determine the interior heavy
element mass for this population of less irradiated stransiting planets. There is a correlation between the stellar
metallicity and the mass of heavy elements in its transiting planet. It appears all giant planets posses a minimum
of ∼10-15 Earth masses of heavy elements, with planets around metal-rich stars being more metal-enriched. This
relationship may provide a constraint on planet formation and evolution models.

Figure 1: Planet radius as a function of average incident stellar flux. Planets are colored
according to mass. Although the extra heating source is not certain, it is clear that it is more
active at larger incident flux. We choose a cutoff of 〈F 〉 < 2 × 108 ergs s−1 cm−2 in order to
get the largest sample of planets before the range of radii significantly increase with increasing
incident flux.

Methods

• Planets are modeled as a core of heavy element core with a Hydrogen/Helium envelope above

• Model atmosphere limits the net outflow of energy depending on incident flux [1]

• For all systems with 〈F 〉 < 2× 108 ergs s−1 cm−2, the core mass is determined that fits the planet’s observed
radius.

We have found that when the heavy elements are homogeneously mixed with the Hydrogen and Helium this typ-
ically results in somewhat smaller planet radius and less metals are required in this model to explain a particular
planet’s radius.

Figure 2: Relationship between the stellar metallicity and the model determined heavy ele-
ment mass for exoplanets within our incident flux cut. Planets are similarly colored according
to the planet’s mass. The solid is the linear fit to log(MZ) as a function of [Fe/H].

Figure 3: Relationship between the stellar metallicity and planet metal mass fraction. It
appears that larger planets may tend to have lower metal mass fractions. Also, for a given mass
planet, more metal rich systems tend to have planets with higher metal mass fractions.

Table of planet’s used and their derived core mass

Number Name Mass Radius Age 〈F 〉 Core mass References

1 HD 80606 b 3.940 1.030 7.0 1.67 ×107 81.1 [2, 3, 4, 3]

2 CoRoT-9 b 0.840 1.050 4.0 6.58 ×106 6.3 [5]

3 HD 17156 b 3.212 1.087 3.4 1.96 ×108 33.4 [6, 7]

4 Kepler-9 b 0.252 0.842 3.0 8.11 ×107 23.3 [8]

5 Kepler-9 c 0.171 0.823 3.0 3.14 ×107 14.9 [8]

6 CoRoT-10 b 2.750 0.970 2.0 5.38 ×107 159.4 [9]

7 HAT-P-15 b 1.946 1.072 6.8 1.51 ×108 17.2 [10]

8 HAT-P-17 b 0.530 1.010 7.8 8.91 ×107 12.0 [11]

9 WASP-8 b 2.240 1.038 4.0 1.79 ×108 66.2 [12]

10 CoRoT-8 b 0.220 0.570 3.0 1.22 ×108 44.7 [13]

11 HAT-P-18 b 0.197 0.995 12.4 1.18 ×108 4.1 [14]

12 HAT-P-11 b 0.081 0.422 6.5 1.31 ×108 20.3 [15]

13 HAT-P-12 b 0.211 0.959 2.5 1.90 ×108 12.4 [16]

14 GJ 436 b 0.074 0.377 6.0 4.03 ×107 19.5 [17]

15 WASP-10 b 2.960 1.080 1.0 2.10 ×108 79.1 [18, 19]

Conclusions

Previous work in determining the correlation between the metallicity of the star and the planet has required
making an assumpion about the heating mechanism in order to include the large radius planets [20]. The popu-
lation of less irradiated giant exoplanets emprically do are not significantly affected by the unconstrained heating
source. This allows us to use the density of these objects to put a constraint on the composition without making
an assumption about the heating mechanism. The mass of metals or the metal mass fraction of these planets can
be compared to the metallicity of the star. It appears that most planets have at least 10 ME of heavy elements,
consistent with the core accretion formation scenario. There appears to be a tendency for planets to have more
metals around stars with more metals. This developing population should provide a check on planet formation
models.
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