

GAS ACCRETION ONTO CIRCUM-PLANETARY DISKS

Tanigawa Takayuki CPS / Hokkaido Univ.

Ohtsuki Keiji (CPS / Kobe Univ.) Machida Masahiro (NAOJ)

Satellites around Giant Planets

- Satellite systems commonly exist around giant planets
- Regular and irregular satellites
 - Regular satellites:
 - Most fraction of total satellite mass
 - Nearly coplanar and circular orbits
 - \rightarrow Indicates formation in circum-planetary disks

Formation of giant planets and the circum-planetary disks

Circum-planetary disks are natural by-products of giant planet formation

Machida 2009

Solid material is also supplied for sure?

- Motion of solid material, which is the building material of satellites, is affected by gas
 - Larger size
 - Basically independent but weakly affected by gas drag.
 - Smaller size
 - Basically same motion with gas with slight deviation.

Purpose of this study

Analyze gas accretion flow and circum-planetary disk structure as a first step in order to understand how solid material, which builds satellites, is supplied to the circum-planetary disks

Numerical simulation

- 3D nested grid method
 - Computational domain 24h x 24h x 6h
 (h is scale height)
 - Mesh : (64 x 64 x 16) x 11 levels
 - Effective mesh number : 65536 x 65536 x 16384
 - Minimum mesh size 0.00037*h*
 - About 1/4 of the present Jupiter radius at 5AU
- Local co-rotating frame
- Isothermal and inviscid gas
- Treatment around the planet
 - Typical smoothing length : 0.0007*h*
 - Removes gas at the planet position

Wide area flow pattern

2D-like flow for outside of the Hill sphere

Close up to the Hill sphere

The outer shock disturbs the laminar flow Upper gas falls to the mid-plane after the shock

Streamlines for Gas Approaching Passing to the Planet Accretion **U-tern** 3.5 V 3 2.5 **z₀=**0 z₀=0.5 2 n 2 Ζ 1.5 0.5 z₀#1/.0

Х

Х

8

3

2.2 2.4 2.6 2.8

х

Disk structure (azimuthal average)

- Clear disk structure
- Thinner in inner region
- Large downward velocity above the disk surface

Analysis of the accreting direction Mass Flux through spheres $r^2 \cos \theta \int_0^{2\pi} \rho v_r d\phi$

• Midplane: Both of inward and outward stream

High elevation angle: Only inward flow

 Almost free fall velocity from high elevation angle gas

Discussion

Bernoulli integral

Constant along stream lines except at the shock surfaces

Tidal potential+ Planet gravitational potential

= Kinetic Energy + Enthalpy + Potential Energy

Accretion needs large energy dissipation, i.e., strong shocks

Needs large kinetic energy

In hydrostatic equilibrium : Enthalpy + Tidal potential = Const. (in z-direction)

 \sim Thermal energy \longrightarrow Not enough to form strong shocks

Gas near the mid-plane : high-density region, i.e., circum-planetary disks

Planet gravitational energy is necessary

- \rightarrow Planet gravitational energy is consumed to enhance enthalpy.
- \rightarrow Difficult to have large kinetic energy.

Upper gas : Jump over the high density region (circum-planetary disks) and the potential energy can be used to enhance kinetic energy

 \rightarrow Possible only for the gas falling directly to the disk surfaces at the vicinity of the planet.

Streamlines inside the accretion band $(x_0 = 1.56)$

Large energy dissipation when the accreting gas hits onto the disk surface

Circum-planetary disk structure r-z plane (Φ-average) 0.05 Contours : v_r Tone : log₁₀(rho) 0.04 0.03 9 4.8 200 0.02 3.6 2.4 0.01 1.2 $V_{r} > 0$ 0 0.00 0.04 0.10 0.00 0.02 0.06 0.08 XFACT = 2.000E-03, YFACT = 4.000E-03

 $v_r < 0$? at r < 0.03?

 $V_{\rm r} < 0$

Summary

- Gas accretion flow structure to the giant planet
 - Jump over dense circum-planetary disks and directly into vicinity of planets, not through dense circum-planetary disks
 - \rightarrow Well accelerated by planet gravity
 - \rightarrow Effective energy dissipation through strong shocks
 - Difficult to accelerate near mid-plane because of dense circum-planetary disks
 - \rightarrow Weak energy dissipation
 - \rightarrow Not easy for accretion
 - Application for planet and satellite formation
 - Gas near mid-plane is difficult for accretion
 - Sediment dust seems to be difficult to supply
 - Difficult to supply material for satellites?
 - Decreases dust/gas ratio of the parent bodies?
 - Very small dust is supplied to the vicinity of the planet
 - \rightarrow Formation region of satellites?