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Satellites around Giant Planets

e Satellite systems commonly exist around giant
planets
e Regular and irregular satellites

o Regular satellites:
e Most fraction of total satellite mass
e Nearly coplanar and circular orbits
e — Indicates formation in circum-planetary disks
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Formation of giant planets and the™=-

circum-planetary disks

— ® Circum-planetary disks are
rot@ natural by—prc_)ducts of giant
planet formation
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Solid material is also supplied for
sure?

® Motion of solid material, which is the building
material of satellites, Is affected by gas
e Larger size

o Basically independent but weakly affected by gas drag.
e Smaller size

o Basically same motion with gas with slight deviation.

Purpose of this study

Analyze gas accretion flow and circum-planetary disk
structure as a first step in order to understand how
solid material, which builds satellites, is supplied to
the circum-planetary disks




Numerical simulation

® 3D nested grid method
e Computational domain 24h x 24h x 6h

o (his scale height)
e Mesh: (64 x 64 x 16) x 11 levels

o Effective mesh number : 65536 x 65536 x 16384
o Minimum mesh size 0.00037h
e About 1/4 of the present Jupiter radius at 5AU

® Local co-rotating frame
® Isothermal and inviscid gas

® Treatment around the planet

e Typical smoothing length : 0.0007h
e Removes gas at the planet position







Close up to the Hill sphere

The outer shock disturbs the laminar:flew.

Upper gas falls to the mid-plane aftertie sheck:
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Disk structure (azimuthal average)
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® Clear disk structure <2
® Thinner in inner region A '.\
® Large downward velocity above the disk surfac ‘
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Analysis of the accreting direction
Mass Flux through spheres
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. | . ® Midplane
® Midplane: Both of inward and outward stream ® Almost free fall velocity from

® _High elevation angle: Only inward flow high elevation angle gas
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Constant along stream lines

D |SC USS | Ol except at the shock surfaces

= Tidal potential
Bernoulli integral + Planet gravitational potential

= Kinetic Energy + Enthalpy + Potential Energy

Accretion needs large energy dissipation, i.e., strong shocks
=) Needs large kinetic energy

In hydrostatic equilibrium : Enthalpy + Tidal potential = Const. (in z-direction)

~ Thermal energy === n ot enough to form strong shocks
=) D|anet gravitational energy is necessary

Gas near the mid-plane : high-density region, i.e., circum-planetary disks
— Planet gravitational energy is consumed to enhance enthalpy.
— Difficult to have large kinetic energy.

Upper gas : Jump over the high density region (circum-planetary disks)
and the potential energy can be used to enhance kinetic energy

— Possible only for the gas falling directly to the disk surfaces at
the vicinity of the planet. 11
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Streamlines inside the accretion band (x, = 1.56)

v**2/2 + Phi + In(rho) v**2/2 + Phi + In{rho)
V22 V22

-
log10ir)

Large energy dissipation when the accreting gas hits onto the disk surface
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Circum-planetary disk structure
r-z plane (®-average)
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Summary

Gas accretion flow structure to the giant planet

Jump over dense circum-planetary disks and directly into
vicinity of planets, not through dense circum-planetary disks

— Well accelerated by planet gravity
— Effective energy dissipation through strong shocks

Difficult to accelerate near mid-plane because of dense
circum-planetary disks

— Weak energy dissipation
— Not easy for accretion

Application for planet and satellite formation

Gas near mid-plane is difficult for accretion

Sediment dust seems to be difficult to supply
Difficult to supply material for satellites?
Decreases dust/gas ratio of the parent bodies?

- Very small dust is supplied to the vicinity of the planet
- — Formation region of satellites?
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