Analysis of CH_4 Q-branch absorption at 3.3µm in brown dwarf spectra with AKARI

Satoko Sorahana (The University of Tokyo, ISAS / JAXA)

Summary. We present the result of our analysis about the appearance of 3.3 μ m CH₄ band in the spectra of brown dwarfs with the Japanese infrared astronomical satellite, AKARI. We obtained good quality spectra for 13 objects that enable us to have a better understanding of the atmospheric structure and onset of the CH₄ band. We confirm that the 3.3 μ m CH₄ fundamental band starts appearing at L5. The band is seen in two of four L5-dwarfs in our sample. We derive the physical parameters of the photosphere of the objects by applying the Unified Cloudy Model. We find that the abundance of CH₄ depends on the critical temperature (T_{cr}) and the surface gravity (log g) rather than the effective temperature (T_{eff}). We suspect that the two groups with/without 3.3 μ m CH₄ band are different in mass and age.

CH₄

T8

T4.5

 CO_2

Introduction.

Brown dwarfs are too light to maintain hydrogen fusion in their cores. They **bridge** between stars and

planets. Carbon in the brown dwarf atmosphere is transferred from CO to CH₄ as the temperature decreases. We can investigate how

Spectroscopy by AKARI/IRC (The Japanese infrared astronomical satellite)

Launched in February 2006

Two instruments : IRC (1.8–26μm), FIS(50–180μm) Observation

2006 – 2007 cold phase (with liquid He) (Phase2) 2008 – 2009 warm phase (without liquid He) (Phase3)

the atmosphere changes from stars to planets by CH₄ as a probe.

The CH₄ bands at 1.6 and 2.2 μ m have been regarded as a key indicative features for classification of T-type (i.e. cooler) brown dwarfs, while the 3.3 μ m CH₄ band has been detected in the dwarfs as early as L5. This implies that the presence of CH₄ does not simply rely on the effective temperature, and that we need more investigation to understand how the 3.3 μ m CH₄ absorption band appears in the infrared spectra of brown dwarfs.

The AKARI data including 3.3µm region should push forward our understanding of the CH₄ molecule behavior in the photosphere of mid to late-L dwarfs. Our purpose of this study is, therefore, to confirm the onset of 3.3µm CH₄ band in L-type dwarfs and to discuss the relation between the spectral feature and properties of the objects.

IRC spectroscopy spectral resolution R \sim 120 wavelength range 2.5-5.0µm

Important molecular bands (CO, CH_4 , CO_2) for investigating the atmospheres of brown dwarfs locate in this wavelength.

Molecular absorption bands in brown dwarfs We investigate the onset of CH₄ band. We calculated the ratio *EW/*<u>A</u>*EW* between the equivalent width *EW* at position of the 3.3 μ m CH₄ Q-branch band and the standard deviation ΔEW at nearby off-band wavelengths. We regard that the detection is significant when the $EW/\Delta EW$ is larger than 3.

Results

object	$EW/\Delta EW$
2MASS J1507–1627	3.17
SDSS J0539–0059	3.14
SDSS J1446+0024	0.77
GJ 1001b	0.73

(1)We find that the CH_4 3.3 μm Q-branch feature starts appearing at L5-type. ²We detect the band in only two sources out of four L5 dwarfs in our AKARI sample.

13 spectra of brown dwarfs by observed by AKARI/IRC

3.0 3.5 4.0 4.5 5.0 2.5 wavelength (µm)

Comparisons of the observed and model spectra To interpret the spectra, we apply the Unified Cloudy Model (UCM) by Tsuji (2002; 2005). In this model, condensation and sedimentation of dust spices are considered. The sedimentation process is parameterized by the critical temperature *T*cr. Thus model parameters are:

<u>chemical composition</u>, ξ (~1km/s), Teff, log g, Tcr ► solar metallicity (Allende Prieto et al. 2002)

CFitting evaluation

1) We constrain the parameter set by using AKARI data only. ②We add the 2MASS J, H and K data to find the final solution.

<u>The parameter space (total $24 \times 4 \times 3$ cases)</u>

- $700 \leq T_{\text{eff}} \leq 2000 \text{ K in } 100 \text{ K grid}$
- *T*cr=1700, 1800, 1900 K and *T*cond (no dust layer)
- log *q*=4.5, 5.0 and 5.5

Discussion and conclusion Generally, CH₄ band is expected to become deep as the effective temperature decreases. However, our result is contradictory. It is indicated that the abundance of CH₄ molecule depends on other parameters, namely T_{cr} and log g rather sensitively.

The L5 dwarfs with and without 3.3 μ m CH₄ band are distinguished by the UCM parameter set ($T_{eff}/\log q/T_{cr}$).

object name	CH_4	$T_{\rm eff}$	$\log g$	$T_{\rm cr}$	C_k
2MASS J1507–1627	Y	1800	5.5	1800	1.82×10^{7}
SDSS J0539–0059	Y	1800	5.5	1800	6.48×10^{6}
SDSS J1446+0024	Ν	1700	4.5	1700	2.07×10^6
GJ 1001B	Ν	1700	4.5	1700	1.76×10^{7}

The properties of the objects

The model fits to the observed spectra on an absolute scale enable us to estimate the radii of the individual objects with the use of the known parallaxes (Vrba et al. 2004).

object name	Sp.T	radiı
J	1	$[R_{Jupi}]$
SDSS J0539–0059	L5	0.80
SDSS J1446+0024	L5	0.76
2MASS J1507–1627	L5	0.76
GJ 1001B	L5	1.41

We find that the radii of the four L5 dwarfs are US almost the same except for the possible binary, biter GJ 1001B (e.g., Leggett et al. 2002). Our result)4 implies that the objects with CH₄ band are more 63 massive than the objects without the CH_4 band. 54The similar radius of the different mass object may indicate that **they are different in age**.

Acknowledgments. This research is based on observations with AKARI, a JAXA project with the participation of ESA. Issei Yamamura acknowledges JSPS/KAKENHI(C) No.22540260.

Geballe et al. IAUS, 211, L369, 2003 Leggett et al. IAUS, 211, 317, 2003 Nakajima et al. APJ, 561, L119, 2001 <u>References.</u> Schweitzer et al. APJ, 566, L435, 2002 Noll et al. APJ, 541, L75, 2000 Tsuji et al. APJ, 575, L264, 2002 Yamamura et al. APJ, 722, L682, 2010