Selective Absorption Mechanism for the Maintenance of Blocking

*A. Yamazaki and H. Itoh (Dept. of Earth and Planetary Sciences, Kyushu Univ., Japan)

Summary

- A new maintenance mechanism of blocking (Selective Absorption Mechanism, SAM), which is associated with the Fujiwhara effect (Fujiwhara 1923), is proposed.
- Case studies and simple numerical experiments support the SAM.

1. Introduction

Block maintenance mechanism

Synoptic eddies blocked by blocking may enhance blocking itself (e.g., Green 1977), and how the eddies interact with blocking?

Eddy Straining Mechanism (ESM; Shutts 1983)

✓ Synoptic eddies strained in the north-south direction by blocking provide negative (positive) vorticity to a blocking high (low) and this vorticity forcing maintains the blocking dipole against dissipation.

✓ Straining of eddies is essential for the intensification of blocking, *i.e.*, energy upward cascading.

Effectiveness of the ESM for some conditions

✓ The positive feedback effect is lost by a subtle change of the condition of

synoptic eddies (Maeda et al. 2000, Arai and Mukougawa 2002).

If blocking is an Ω-type (monopole), what happens? Another 'maintenance' mechanism

Intense synoptic cyclones advect subtropical air into the block (Tsou and Smith 1990, Lupo and Smith 1995)

← Intense cyclones do not always accompany a blocking

Propose a further perspective on the maintenance mechanism

Mechanism

Basic idea

otal

✓ Maintenance mechanism as the supply mechanism of low (high)-PV air to blocking high (low)

✓ Interaction mechanism between the blocking high (low) and low (high)-PV eddies (Fujiwhara effect; Fujiwhara 1923)

→ Asymmetry between synoptic highs and lows

Fig. 1: Conceptual figure for the interaction between binary anticyclonic eddies and the vorticity distribution induced by eddy A.

Selective Absorption Mechanism (SAM): The blocking high (low) selectively attracts and absorbs anticyclonic (cyclonic) eddies, i.e., eddies with the same polarity, but separates cyclonic (anticyclonic) eddies, and thus reinforces its own PV

- 1) the SAM does not depend on the position of the stormtrack, the size of eddies, or how eddies impinge on blocking
- 2) the SAM could explain the eddy feedback for a Ω -type blocking as well as a dipole type

3. Trajectory Analysis

Data and Method

✓ Japanese 25-year reanalysis data (6-hour intervals and truncation of T106): Ertel's PV (EPV) and wind data on 320-K

✓ A cutoff period of 8 days, for separating high-frequency components including synoptic eddies from low-frequency ones including blocking.

Parcels are put on synoptic eddies upstream of the persisting blockings and are

Fig. 3 : Trajectories of high-frequency negative (red)/positive (black) EPV parcels and low-freq ency EPV (blue contour) for 10 blocking cases. Red/Black parcels are placed in the regions of highpass filtered negative/ positive EPV less/more than -/+3 PVU upstream of the persistent blockings. The contour interval is 1 PVU.

The red/black parcels are absorbed/separated into/from the blocking high.

4. Numerical Experiments

Model description

✓Equivalent barotropic QGPV equation on a β-plane channel

✓ Fully nonlinear model → Includes the asymmetry of eddies ∂d $+ J(\psi, q) = \bar{J}(\psi_0, q_0) + F_1 - \lambda \nabla^2 \psi - \nu \nabla^6 \psi$

$$\begin{pmatrix} \frac{\partial}{\partial t} + U \frac{\partial}{\partial x} \end{pmatrix} q + \beta_* \frac{\partial \psi}{\partial x} + J(\psi, q) q = \nabla^2 \psi - (1/L_d^2) \psi \bar{J}(\psi_0, q_0) \equiv U \frac{\partial q_0}{\partial x} + \beta_* \frac{\partial \psi_0}{\partial x} + J(\psi_0, q_0)$$

Spectral expansion $\beta + U/L_d^2$: effe $\psi(x, y, t) = \sum a_Z \cos(ly) + \sum \sum a_E \exp$ ed by U and L

..., ±K, I = 1, 2 ', ..., L ' is K=42. I =42 oundary condition $\begin{array}{c} \checkmark \ cyclic \ at \ x=0,2\pi \\ \checkmark \ \frac{\partial u}{\partial r} = 0 \quad \ and \quad \left(\sum_{0}^{2n_{c}} \frac{\partial u}{\partial r} \right)_{d_{T} = 0} \ at \ y=0,\pi \\ \hline \ Time \ integration \end{array}$ Timestep: 6 mir on period; 40 day e Kutta method

if $\lambda = v = F_1 = 0$, then $\overline{J}(\psi_0, q_0) = 0$ Parameter settings $U = 13.8 \text{ ms}^{-1}$ $L_x = 42,000 \text{ km}$ = 21,000 km $L_y = 21,000 \text{ km}$ $\beta_* = 1.9 \times 10^{-11} [\text{m}^{-1}\text{s}^{-1}]$ $\nu = 1.0 \text{ day}^{-1}$ for K Wavemaker setting $\bar{F} \sin \left\{ \frac{\pi (x - x_0)}{\Delta x} \right\} \cos \left\{ \frac{5\pi (x - x_0)}{\Delta x} - \omega t \right\} \sin \left\{ \frac{\pi (y - y_0)}{\Delta y} \right\}$ eddy wavelength: 4200 km period: $\omega/2\pi = 4.5$ days

Experiments

1) there is no wavemaker (no-eddy Exp.) 2) the wavemaker is put on the same latitude as the blocking center (no-shift Exp.) 3) the wavemaker is put on the latitude of 1000 km south of the blocking center (shift Exp.)

✓ The two wavemaker experiments show more persistent block than the no-eddy experiment does.

Time sequences of PV show that the essence of the mechanism for the maintenance is the absorption not but the straining