P-20

The CPS International School of Planetary Sciences January 4-9, 2010

Temporal variations of the Venus oxygen night airglow observed from ground

Shoko OHTSUKI (ISAS/JAXA) Naomoto Iwagami (Univ. of Tokyo)

O₂ airglow on Venus 1.27 μm (and 1.58 μm) night airglow

Main transition is $O_2 (a^1 \Delta_g - X_3 \Sigma_g^-)$.

Emission at 1.27 μ m is its (0-0) band and the brightest airglow on Venus.

It is detected on both the nightside and dayside of Venus by ground-based observation (Connes et al., 1979)

Currently (0-1) band emitting at 1.58 µm has been observed for the first time with VIRTIS on Venus-Express spacecraft.

O₂ airglow on Venus 1.27 μm (and 1.58 μm) night airglow

Observations in 1990's

(Allen et al., 1992; Crisp et al., 1996):

The brightest patch exists around antisolar point.

The spatial structure is complex and varies dramatically.

 O_2 airglow can be used as a probe of chemistry & dynamics around the emitting layer (<u>90~115km</u>).

Observations Moderate resolution ($\lambda/\Delta\lambda \sim 1000-2500$)

date	11/Dec/2002	11/May/2004
site	Okayama Astrophysical Observatory, Japan (seeing ~2.5")	Gunma Astronomical Observatory, Japan (seeing 2~3")
telescope	1.88m	1.5m
instrument	SuperOASIS MCT array 0.97"/pix, 128×128	Infrared Camera MCT array 0.4"/pix, 1024×1024
Resolution,	R~1,000	R~1,500
range	1.25~1.33 µm	1.17~1.32 μm

- -the 1.27 μ m airglow feature of O₂ IRA (0,0) band,
- -the thermal emission from the lower atmosphere,
- –stray light from bright **dayside**.

Observations High resolution ($\lambda/\Delta\lambda \sim 40,000$)

date	14/Dec/2005, 17-18/Feb/2006, 13-15/Jul, 22-24/Sep/2007	
site	InfraRed Telescope Facility, Mauna Kea, Hawaii (seeing ~1")	
telescope	3m	
instrument	CSHELL InSb array 0.2"/pix, 256×256	
Resolution,	R~40,000	
range	1.264 [~] 1.267 μm	

High spectral resolution makes possible to conduct "daytime" observations!

Spectral analysis High resolution (\lambda/\Delta\lambda \sim 40000)

Because of daytime observation,

Observed = Venus **airglow** + **sky** (+ stray light from dayside)

- Each emission line in R-branch of O₂ ($a^1\Delta_q X_3\Sigma_q^{-}$) (0-0) band is resolved.
- Thermal emission from lower atmosphere is negligible weak.

Intensity and Temperature High resolution ($\lambda/\Delta\lambda \sim 40000$)

- 1 Bright region around anti-solar point
- 2 Streak like structure

 Warmer region and cooler region

Temperature at 95 km

Method	Temperature (K)	Reference
1.27 µm_02 airglow	185 ± 15	<u>Connes et al. (1979)</u>
Pioneer Venus night probe deceleration	167.2	Seiff and Kirk (1982)
Pioneer Venus OIR	170-175	Schofield and Taylor (1983)
VIRA (based on OIR and probe deceleration)	168	Seiff et al. (1985)
CO mm lines	165-210	Clancy and Muhleman (1991)
1.27 .µm .02 airglow	_ 186 ± 6	Crisp. et al_(1996)
CO mm lines	165-178	Clancy et al. (2003)
1.27 .µm .02 airglow	_ 193 ± 9	Ohtsuki et_al. (2005)
Venera 15 IR Fourier spectrometer	166.4	Zasova et al. (2006)
SPICAV Stellar occultation	194-240	Bertaux et al. (2007)
1.27 µm O2 airglow	181-196	
(intensity weighted mean)		Bailey et al. (2008)

Rotational temperatures of O_2 airglow are higher than the temperature at this altitude expected from VIRA (168K at 95km).

Airglow and temperature

Heating associated with downward flow

- Calculated T_{rot} in the bright region were higher and low T_{rot} in the dark region.
- → T_{rot} have a weak correlation with the airglow intensity. [Ohtsuki et al., 2005,2008]
- "Warm layer in cryosphere" at altitudes 90-120km was detected by recent VEX/SPICAV observation.[Bertaux et al.,2007]

Temperature in bright region of the O_2 airglow is thought to be higher than other region, due to **adiabatic heating** associated with strong downward flow in solar-antisolar circulation. Intensity maps 2007/7/13

Intensity maps 2007/7/14 -5

Intensity maps 2007/7/15 -5

Polar plot at anti-solar point

Observations with VIRTIS-M Nadir observation mode

 \rightarrow

Many horizontal distributions of O2 emission are observed.

- Mean global map (over 880 orbits data are averaged) is shown.
- Region of maximum emission, 1.2MR, is near Anti-Solar point.

Coordinated observations can cover wider range of night hemisphere!

Summary

- In this 10 years many ground-based observations of O₂ airglow were conducted.
 - Rotational temperature of O_2 airglow is derived.
 - A local temperature enhancement is found.
 - Adiabatic heating due to downwelling may produce a local warmer region.
 - High spectral resolution of CSHELL allows to observed O₂ airglow in daytime.
 - Temporal variation of the airglow around the anti-solar point were monitored.

AKATSUKI Message Campaign

We will deliver your message to the bright star Venus !!

JAXA would like to enhance people's interest in space and the Earth by holding a "message campaign" in which we invite people to send us messages that will be printed in fine letters on an aluminum plate and placed aboard the Venus Climate Orbiter "AKATSUKI".

