Generalized Nonlinear Subcritical Moist Symmetric Instability

Yanjie LI Jianping LI Weisong LU* Haiyan SHAO*

Institute of Atmosphere Physics, Chinese Academy of Sciences, Beijing, China 100029

*College of Atmospheric Science, Nanjing University of Information Science and Technology,

Nanjing, China 210044 lyj@mail.iap.ac.cn

Introduction

>Emanuel(1983),Xu(1986),Cho et al.(1993) and Mu et al.(1999) investigated the problem of nonlinear symmetric stability by different means.

>Lu(2003) developed a new kind of generalized energy as the Lyapunov function, and proposed Subcritical Symmetric Instability. However, the moist process did not be considered.

2. Subcritical Moist Symmetric Instability(GNSMSI)

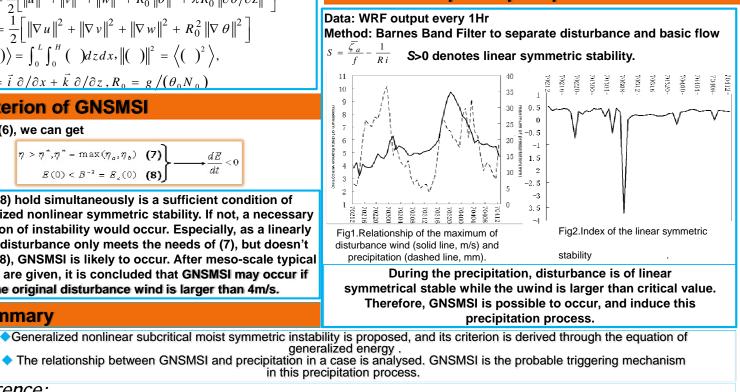
Starting from nonlinear equations on the f-plane containing frictional dissipation and condensation heating under the Boussinesg approximation, let u = u', $v = \overline{v} + v'$, w = w', $\theta = \theta_e + \theta'$, and we get the nonlinear disturbance equations.

Starting
Equations
Starting
Equations
Equations

$$\begin{cases}
\frac{Du}{Dt} = fv - \frac{1}{\rho_0} \frac{\partial p'}{\partial x} + \eta_r \nabla_r^2 u \\
\frac{Dv}{Dt} = -fu - \frac{1}{\rho_0} \frac{\partial p'}{\partial y} + \eta_r \nabla_r^2 v \\
\frac{\partial v}{\partial x} = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial z} + fv - \frac{\partial u}{\partial z} + \eta_r \nabla^2 u \\
\frac{\partial v}{\partial t} = -u \frac{\partial v}{\partial x} - w \frac{\partial u}{\partial z} + fv - \frac{\partial u}{\partial z} + \eta_r \nabla^2 v \\
\frac{\partial v}{\partial t} = -u \frac{\partial v}{\partial x} - w \frac{\partial u}{\partial z} + fv - \frac{\partial u}{\partial z} + \eta_r \nabla^2 v \\
\frac{\partial v}{\partial t} = -u \frac{\partial v}{\partial x} - w \frac{\partial u}{\partial z} + fv - \frac{\partial u}{\partial z} + \eta_r \nabla^2 v \\
\frac{\partial v}{\partial t} = -u \frac{\partial v}{\partial x} - w \frac{\partial u}{\partial z} + fv - \frac{\partial u}{\partial z} + \eta_r \nabla^2 v \\
\frac{\partial v}{\partial t} = -u \frac{\partial v}{\partial x} - w \frac{\partial u}{\partial z} - \frac{f^2}{f} u - \frac{S^2}{w} + \eta_r \nabla^2 v \\
\frac{\partial u}{\partial t} = -u \frac{\partial v}{\partial x} - w \frac{\partial u}{\partial z} + \frac{g}{\theta} - \frac{\partial P}{\partial z} + \eta_r \nabla^2 w \\
\frac{\partial u}{\partial t} = -u \frac{\partial v}{\partial x} - w \frac{\partial u}{\partial z} + \frac{g}{\theta} - \frac{\partial P}{\partial z} + \eta_r \nabla^2 w \\
\frac{\partial u}{\partial t} = -u \frac{\partial v}{\partial x} - w \frac{\partial u}{\partial z} - \frac{g}{\theta} - \frac{\partial P}{\partial z} + \eta_r \nabla^2 w \\
\frac{\partial u}{\partial t} = -u \frac{\partial v}{\partial x} - w \frac{\partial u}{\partial z} - \frac{g}{\theta} - \frac{\partial P}{\partial z} + \eta_r \nabla^2 w \\
\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - w \frac{\partial u}{\partial z} + \frac{g}{\theta} - \frac{\partial P}{\partial z} + \eta_r \nabla^2 w \\
\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - w \frac{\partial u}{\partial z} - \frac{g}{\theta} - \frac{\partial P}{\partial z} + \eta_r \nabla^2 w \\
\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - w \frac{\partial u}{\partial z} - \frac{g}{\theta} - \frac{\partial P}{\partial z} + \eta_r \nabla^2 w \\
\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - w \frac{\partial u}{\partial z} - \frac{g}{\theta} - \frac{\partial P}{\partial z} + \eta_r \nabla^2 w \\
\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - w \frac{\partial u}{\partial z} - \frac{g}{\theta} - \frac{\partial P}{\partial z} + \eta_r \nabla^2 w \\
\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - w \frac{\partial u}{\partial z} - \frac{g}{\theta} - \frac{\partial Q}{\partial z} + \eta_r \nabla^2 w \\
\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - w \frac{\partial u}{\partial z} - \frac{g}{\theta} - \frac{\partial Q}{\partial z} + \eta_r \nabla^2 w \\
\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - w \frac{\partial u}{\partial z} - \frac{g}{\theta} - \frac{\partial u}{\partial z} + \eta_r \nabla^2 w \\
\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial z} - \frac{g}{\theta} - \frac{\partial u}{\partial z} + \eta_r \nabla^2 w \\
\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial z} - \frac{g}{\theta} - \frac{\partial u}{\partial z} - \frac{g}{\theta} - \frac{\partial u}{\partial z} + \eta_r \nabla^2 w \\
\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial z} - \frac{g}{\theta} - \frac{\partial u}{\partial z} - \frac{g}{\theta} - \frac{\partial u}{\partial z} + \eta_r \nabla^2 w \\
\frac{\partial u}{\partial t} = \frac{u}{\partial u} - \frac{u}{\partial u} - \frac{u}{\partial u} - \frac{u}{\partial u} \\
\frac{\partial u}{\partial t} = \frac{u}{\partial u} - \frac{u}{\partial u} - \frac{u}{\partial u} - \frac{u}{\partial u} \\
\frac{\partial u}{\partial t} = \frac{u}{\partial u} - \frac{u}{\partial u} -$$

(7)-(8) hold simultaneously is a sufficient condition of generalized nonlinear symmetric stability. If not, a necessary condition of instability would occur. Especially, as a linearly stable disturbance only meets the needs of (7), but doesn't satisfy (8), GNSMSI is likely to occur. After meso-scale typical values are given, it is concluded that GNSMSI may occur if the original disturbance wind is larger than 4m/s.

$$\frac{u}{dt} = -u\frac{\partial u}{\partial x} - w\frac{\partial u}{\partial z} + fv - \frac{\partial P}{\partial x} + \eta \nabla^2 u$$
(1)
$$\frac{dv}{dt} = -u\frac{\partial v}{\partial x} - w\frac{\partial v}{\partial z} - \frac{F^2}{f}u - \frac{S_w^2}{f}w + \eta \nabla^2 v$$
(2)



Reference:

5. Summary

Lu Weisong, Shao Haiyan. 2003, Generalized nonlinear subcritical Symmetric instability. Advances in Atmospheric Sciences, 20(4): 623-630. Cho H R, T G Shepherd, V A Vladimirov. 1993, Application of the direct Lyaponov method to the problem of symmetric stability in the atmosphere .J Atmos Sci, 50(6): 822-836.