Atmospheric Structures of Ocean Planets:

a Study of Mechanisms to Determine Inner Edge of Habitable Zone

Hiroyuki Kurokawa, Taishi Nakamoto

(Department of the Earth and Planetary Sciences, Tokyo Institute of Technology, Japan)

Purpose

form is obtained

Method for Structure Calculation

We assumed <u>a plane parallel atmosphere</u> same as previous studies. As a first step, we assumed the <u>atmospheric composition is pure water vapor and the mass is same as the Earth's one</u>

Change of KI-limit The result shown in Fig. 6 can roughly be

Method 1

0.9

y

Fig. 6. Values of the KI limit

0.85

0.95

separated in two reg

Another Radiation Limit

Fig. 7 shows changes of structures by the absorption. The temperature of the absorption region becomes higher by its heating. The temperature below the region becomes lower by shadowing.

TIKI

The KI-limit becomes smaller when the heating by the absorption occurs at $\tau \sim 0.1$. The KI-limits becomes larger when the absorption occurs $\tau < 0.1$.

(b)

$\alpha > 10$ The KI limit becomes larger, $\alpha < 10$ The KI limit becomes smaller, than the value of the no-absorption case

method 2 are shown in table 1. In table 1, the cases of $T_{sun} = 3000,4500,6000$ K are considered. The change of T_{sum} corresponds to the change of γ and α . Fig. 7. Comparison of atmosph with and without the absorption Reference List without the absorption with the absorption (a) $\gamma=0.5 \alpha=100$ $F_{in}(0)=385, 440 \text{Wm}^{-2}$

Method 2

rption

T_{sur}

3000 [K]

4500 [K]

6000 [K]

without abs

Table 1. Ki-limit calculated with method 2

Values of the KI-limit calculated with

KI-limit

600 [W m⁻²]

575 [W m⁻¹

570 [W m-2]

610 [W m-2]

(b) $\gamma=0.5 \alpha=1$ $F_{in}(0)=325, 385 \text{Wm}^{-2}$

Here, an important fact is recognized. Incoming flux over the "KI-limit" only mean, "The atmosph can not have moist-convective troposphere", not "a planet cannot have ocean on its surface".

Conclusion

We studied the effect of the absorption of incoming central star radiation, using, (method 1) "Simplified absorption model" and "(method 2) line-by-line calculation"

Change of Radiation Limit of Troposphere

1.15

Fig. 8. Values of the radiation limit

Fig. 8 shows the change of the radiation

The absorption makes the radiation limit of the troposphere larger.

the incoming radiation reaching

photosphere

This is because the absorption reduces

Fig. 9 shows the absorption does not change the photospheric $F_{\rm IR}$ value!

Method 1

By using method 1, we calculated radiative-convective atmospheric structure which corresponds to each value of T_i , regarding γ and α

0 200 250 F_{IR} [Wm⁻²]

_____ satu

T_[K]

Fig. 9. Examp

 $\gamma = 0.4 \ \alpha = 1$ $\gamma = 0.4 \ \alpha = 10$ $\gamma = 0.4 \ \alpha = 10$

mples of calculated

- (1) The KI-limit becomes smaller when the heating by the absorption occurs at $\tau \sim 0.1$.
- The KI-limits becomes larger when the absorption occurs $\tau < 0.1$. The absorption makes the radiation limit of the troposphere larger. (2) The possibility of a new atmospheric structure of a ocean planet,
- "dry atmosphere", was obtained.

As a future work.

We consider dry- and moist-convection in line-by-line structure calculation.
We include the effect of "continuum absorption" of water vapor in the calculation.

The atmospheric structures shown in Fig. 10 become isothermal at lower layer. This is because the incoming radiation does not reach the layer. This phenomenon can be modeled as γ =1 and α <1 case in method 1. When the incoming radiation is larger than the KI-limit, the atmosphere can not have moist-convective troposphere. In such a case, "dry atmosphere" without moist-convection forms Method 2 Fig. 10 Fig. 10. radiative equilibrium atmospheric structure corresponds to incoming flux larger than the KI-limit method 1 $\sigma T_{iso}^4 \sim F_{in}(0) \frac{3}{2}$ If α is sufficiently large, T_{iso} becomes < 647K (critical temperature of water). In such a case, the planet can have ocean against the incoming radiation over the KI-limit! p [Pa]1 $F_{in} = 600 \text{ Wm}^{-2}$ $T_{sun} = 4500 \text{ K}$ $F_{in} = 600 \text{ Wm}^{-2}$ $T_{sun} = 3000 \text{ K}$ T[K]

without