

VERTICAL AND SURFACE CARBONDIOXIDE OBSERVATION **IN EQUATORIAL INDONESIA**

Ginaldi Ari Nugroho, Chunaeni Latief, Asif Awaludin, Afif Budiono, Heri Suherman, Tiin Sinatra

Assessment of Air Pollution and Ozone Division National Institute of Aeronautics and Space-LAPAN

> Jl. Dr. Djunjunan No. 133 Bandung Email: ginaldi.lapan@gmail.com

Introduction

Infrared spectrum absorption from earth surface (Source: http://www.geology.iastate.edu)

Green House Gases (GHG): CO₂, N₂O, CH₄, SF₆, PFCs, HFCs (as black body), are the main driver for the greenhouse effect and GHG are essential to maintaining the earth temperature. Ideally, the earth surface's temperature will always be in steady state because of the balance of heat radiation through absorption of infrared in the atmosphere, causing the earth not get cold or hot quickly.

As a GHG (Green House Gases), CO₂ absorb emission energy radiation from earth in wavelength 2 - 20 micrometers. CO₂ absorb infra red energy for vibration and stretching, causing lower atmosphere becomes warmer. Some scientist had a notion that CO₂ is also posses a black body characteristic, thus the raise of CO₂ concentration will follow the absorption heat cycle of atmosphere. The higher CO₂ concentration become shorter infrared path distance, before total atmospheric absorption happen, however occurred in the lower atmosphere. In the same time, more infrared will be released out to the space (Heinz Hug, 2008)²).

The aim of this research is to study the vertical concentration of CO_2 in Indonesia. The goal is to identify the concentration pattern in tropopause area, to discover the CO₂ convection movement pattern and its surroundings stream, to find a characteristic of carbon dioxide in the surface,, and to compare carbon dioxide concentration in certain location in Indonesia due to human activity

Data and Research Method

This research is basically to observe vertical and surface carbondioxide concentration. The vertical observation utilized by launching a measuring balloon, the CO₂ concentration can be measured, and the change of CO₂ concentration and the probability of CO₂ convection can be identified. The payload consist of CO2 NDIR sensor that transmit its result to the receiver, after reaching troposphere layer the payload disconnect automatically with the balloon and drop freely into the earth surface.

While the surface observation is to monitor diurnal variations of surface atmospheric carbon dioxide. To accomplish that, we build 5 CO₂ ground station in 3 different island in Indonesia. Two of this station located in the equatorial region. Using the NDIR CO₂ sensor, result data than collected, analyze and displayed by CO₂ software. Adding to the data observation, are the data satellite from AIRS (Atmospheric Infrared Sounder) in NASA Aqua Satellite. The data consist of mole fraction value of carbon dioxide in free troposphere. In daily or monthly observation.

Vertical Observation

Surface Observation

Instrument systems to measure CO₂ vertical and balloon launched (Source : Chunaeni Latief, 2008)

Balloon carrying payload fill with sensor was conducted with height arrangement from 18 to18.5 km with velocity between 2.5 m/s until 6 m/s, and time sampling 30 seconds per data. It was expected that there would be a layer sample between 75 - 180 m. So there would be a representative sample at atmosphere layer and the ability in sending data and also saving power battery.

After the result of measurement compilation by sorting elevation, CO₂ data concentration sequenced and correction using ideal gas, then the data can be plotted.

The pattern of CO₂ profile measurement was similar to different location. At certain elevation (example at 2.279 km ion Bandung Oct'08) shows the CO₂ concentration went down (decrease) to 298.1 ppm, and then went up (increase), with temperature still went down about 17.43 °C, this because (decrease) seasons transition from dray to rainy season respectively.

This phenomenon called mixing height, it occurred from the concentration changes due to balloon move up because of the convection from seasons variation bellow.

August 2003

carbondioxide research.

CO₂ ground station placed in 5 different location Bandung, Watukosek, Palembang, Kototabang and Pontianak. The last two location was located in the equatorial region.

Every CO₂ gound stations composed of NSDIR CO₂ sensor with measurement range 0 - 2000 ppm, attached at a 12.5 meter tower and join with self design data logger. The sensor have response time of 30 seconds with accuracy ±(20ppm + 2% of

The sensor was placed inside sensor house to protect from heat and water. The result data can be monitored in the CO₂ display in daily observation. Added to the observation were the wind observation (wind speed and wind direction) from two different sources, from NCAR models analysis and AWS (Automatic Weather Station) placed in each station

CO₂ Ground Station, Location and CO₂ data monitor (Source : Asif Awaludin, 2008)

Yearly CO2 Concentration (May 2008 - May 2009) 410 (mdd) uc 390

CO₂ Vertical Profile in Bandung and watukosek Indonesia (Source : Chunaeni Latief et.al,2008)

CONCLUSION

A self design CO₂ measurement system had been made by team from LAPAN for measuring both vertical and surface CO₂ concentration to provide a more comprehensive research on atmospheric science especially in greenhouse gases research. Added to this research are the AIRS data satellite from NASA.

CO₂ vertical concentration pattern in different location (Bandung and Watukosek) showed that by increased altitude the CO₂ concentration becomes lower. The vertical profile nearly had the same pattern (increasing altitude will cause a decrease of CO_2 concentration) in every location but there was also a changing pattern in certain altitude (CO₂ concentration becomes lower although the altitude increases) which presumed because of mixing height.

In surface observation there is a same pattern in every location which resulting a sinusoidal pattern of CO₂ concentration. Maximum concentration value occurred at about 5.00 – 8.00 in the morning, while the minimum concentration value occurred at about 12.00 – 16.00 in the afternoon. The yearly observation data showed an oscillation curve similar to the keeling curve. From satellite data showed an increase average of 12 ppm from 2003 until August 2009.

There is also an influence occur from wind speed and wind direction to

In here shows the increase of the carbondioxide concentration in the Indonesia territory. From 2002 until 2009 there have been an increase about 12 ppm (376 ppm on 2003 and 388 ppm on 2009) based on the average mass fraction measurement from the satellite.

CO₂ observation using AIRS data satellite in August (2003 and 2009) (Source : http://mirador.gsfc.nasa.gov)

August 2009

Wind Direction and Wind Speed from NCAR and AWS Source :www.cdc.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html)

Reference

Chunaeni Latief, Asif Awaludin, Gun Gun Gunawan, 2008. "CO2 Vertical Monitoring in Bandung using 2000 gr Meteorological Balloon of 4700 Gram Lift Forced",

Asif Awaludin, Ginaldi Ari, Chunaeni Latief, Heri Suherman, 2008. "Characteristic of Surface Carbon dioxide in Bandung, Watukosek, and Pontianak (Based on Daily Observation)".

Massen.F, K. Antoin, and N. Harpes. 2009. Seasonal and Diurnal CO₂ Pattern at Diekirch, LU 2003-2005.

www.cdc.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html

CO₂ Yearly and Diurnal Variation in Different Location in Indonesia (Source : Asif Awaludin,2008)

In surface observation there is a same pattern in every location which result a sinusoidal pattern of CO₂ concentration. The yearly observation data shows part of the continuous keeling curve of the CO₂ pattern where the lowest concentration occur in august - october while the maximum in march - april (although it still in research progress). Maximum concentration value occurred at about 5.00 -8.00 in the morning, while the minimum concentration value occurred at about 12.00 -16.00 in the afternoon.

The wind observation also related to the surface CO_2 pattern where the maximum average of wind speed (3 m/s - 5

the reason of the sinusoidal curve of CO_2 concentration in the surface

Heinz Huge, The Climate Catastrophe, 2008, http://www.johndaly.com//artifact.htm

observation.