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The name of the game
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¢ noun 1 scattered items or pieces of rubbish. 2 loose broken pieces of rock.

— oRrIGIN French, from débriser ‘break down'.
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Our solar system
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Other planetary systems
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Protoplanetary phase and

Standard formation scenario:

* A disk of gas and dust

« From dust to planetesimals

* From planetesimals to embryos (~1Myr)
(closer to the star, otherwise takes too long)

» Gas accretion onto large embryos (< 10 Myr)

* Disk clearing

« Formation of terrestrial planets (~100 Myr)

A planetesimal belt on the periphery (KB), producing dust

Evolutionary phases of planetary systems
10Myr 10Gyr
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(1) Infrared excesses (“Vega phenomenon”)

The first discovery of an infrared
excess over stellar photospheric
emission of a main-sequence star:
Vega.

=
<

Infrared |

Star
Star + something

Somethlng Frc. | —Energy distribution of the infrared excess from a Lyr. The
error bars represent the 14 libration uncertainty. The 12 pm upper
limit indicates the effect of the 3% uncertainly in the absolute cahbration
at 12 pm. The solid line represents a 85 K blackbody spectrum with
solid angle of 7 » 107 sr fitted 1o the excess. The dashed line represents
a 500 K blackbody spectrum with a selid angle of 63 = 107'% 4
arbitrarily fitted 10 the 12 pm upper limit.

Wavelength
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(1) Infrared excesses (“Vega phenomenon”)

Since then:
thanks to IRAS, IS0, ..., Spitzer,
the Vega phenomenon has been

observed

HIP57632

Near future: Herschel
-> poster by Jens Rodmann

12 25 60100170

1st CPS International School of Planetary Sciences Kobe, January 8, 2009 10




ESO Press photo (1997)
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(2) Images

Vis NIR FIR sub-mm
~10 Myr age ’
¥ =
4 S Pic
Since then: imaging
with many ground-based T : |
instruments and HST, ~RE N J AU Mic
both in scattered light ==
and thermal emission oy, '.
: !
o Lyr . O
~1 Gyrage | € Eri aall
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Observed dust is evidence for planetesimals

Ages of systems: 10 Myr ... 10 Gyr
But: estimated lifetime of dust particles: < 1Myr

v

Dust cannot be primordial and
needs continuous replenishment

As growth is impossible,
dust must stem from parent bodies, planetesimals

A conceivable mechanism:
collisions of planetesimals

1st CPS International School of Planetary Sciences Kobe, January 8, 2009 13




Outline

> Concept of debris disks
Part |

A7

Observations of debris disks

Y

Basic theory of debris disks

Debris disks: seeing dust

Part Il Debris disks: thinking of planetesimals

Debris disks: thinking of planets

V VYV VY VY

Debris disks: thinking of planetary systems

Y

Summary

1st CPS International School of Planetary Sciences Kobe, January 8, 2009 14




Physical processes: (a) collisions

Individual collisions Collisional cascade

L
@ ..

planetesimals... boulders ... dust

108
target radius (crn)

Under debris disk conditions: Collisional cascade grinds
- Disruptive collisions planetesimals to ever-smaller
- Cratering collisions fragments, down to dust sizes.
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Physical processes:

Stellar “photogravity”

radiation pressure

Dust grain

gravity

£

1st CPS International School of Planetary Sciences

(b) stellar “photogravity”

planetesimals in nearly-circular orbits,
dust grains in elliptic ones,
fine dust leave the system in hyperbolas

Anomalous hyperbolas

~

Ellipses

Release point

Orbit of parent body or
center of mass of two colliders

Kobe, January 8, 2009
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Physical processes: (c) drag forces

Poynting-Robertson force dust orbits slowly circularize
and shrink toward the star

. radiation pressure
direct radiation pressure /o

Stellar wind drag force “corpuscular analog” to the P-R effect
(strong for late-type stars)
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Physical processes: (d) planetary perturbations

Gravity of planets confines planetesimals,
stirs them up,
exerts secular and resonant perturbations on them

-

secular offset (e, ®) secular warp (i, Q)
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Physical processes: (e) others

Sublimation and sputtering eliminate dust close to the star,
gradually reduce their size
(important for early-type stars)

Lorentz force important for small grains only
and only if appreciable MF is present

... and many others
that are usually not included in debris disk models,
but may be important...
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Modeling methods

> Celestial mechanics / N-body simulations
- N-body + “inflated spheres” + local PiaB

Accurate dynamics but inaccurate collisions (if any)

» Kinetic theory / Statistical codes

- Multiannulus PiaB
- Kinetics in orbital elements «—NCE

Accurate collisions but simplified dynamics

» Hybrid methods
- “Superparticles”

Share (dis)advantages of two previous methods

Main challenge: how to combine accurate dynamics with accurate collisions?
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Collisions and photogravity at work: size distribution
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* Tiny blowout grains are present, but in smaller amounts
 Grains just above blowout limit dominate cross section
* Size distribution is wavy

1st CPS International School of Planetary Sciences Kobe, January 8, 2009 21




Collisions and photogravity at work: size distribution
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» Cratering collisions are important
» They substantially enhance the “main” maximum
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Collisions and photogravity at work: radial profiles

no cratering ——
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Surface density index ~-1.5, brightness index ~-3.5
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From dust distributions to observables

Need to calculate light scattering and thermal emission of dust

blackbody temperature [K] 5
150 100 70 50 35 20 cross section [cm® cm’
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What do infrared spectra tell us about dust grain properties?

Spitzer HD69830 Disk Spectral Model

Spitzer IRS Best Fit Model
%2 =1.09

HD 69830

Hale Bopp/1000
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At a first glance: A closer look: HD69830 50% crystalline,
looks like cometary dust! Hale-Bopp only 7-30%. Asteroidal dust?

-> many posters!
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What do infrared spectra tell us about dust grain properties?

HD 181327

Flux (Jy)
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10 mu Si feature is often observed. Water ice around at 90 AU from
When not, no Si? Or large grains? an F5 star despite photodesorption?
-> many posters!
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Seeing kids, thinking of parents

B T
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Statistics of debris disks: a long-term decay

 Dust luminosity decay with system’s age, albeit with a large scatter
« Reason: collisional depletion of a planetesimal belt

1st CPS International School of Planetary Sciences Kobe, January 8, 2009 30




Dominik-Decin (2003) model

Planetesimals

« Equal-sized planetesimals “feed” dust
» Dust has a single power-law size distribution
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Dominik-Decin (2003) model

 For collision-dominated disks (usually the case),
total disk mass ~ dust mass ~ ¢ "1

« “Delayed stirring” suggested to explain high
luminosity in some of the old systems
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Wyatt et al. (2007) model

Planetesimals

Still, an assumption of a quasi-steady state
(a single power-law size distribution)
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Wyatt et al. (2007) model

1000 10000 1000

100 1000 10000 100 1000
Time, Myr Time, Myr

* For any given age, there is a maximum possible amount of dust
* Disk evolution depends on r, e, I, D,
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Lohne et al. (2008) model

=30 Al

Gyr

Krivov, Sremcevic, & Spahn,
Icarus 174, 105-134 (2005

qd—cmb—1

radius [Lkml
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Lohne et al. (2008) model

Scaling rules

F(xM,,r,t) = xF(M,, r, xt)
FWM,,yr,t) = F(M,, r, y+3t)

FM,,r,zt) =~ z°F(M,, r, t),
E~0.3...0.4
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Lohne et al. (2008) model

=== My =1 Mgy
[ I B B ] M0=3M rth
—— Mg =10 Mg
sEEEEEg M0=30 Meal’th

fmax Of Wyatt et al.
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Lohne et al. (2008) model

2
Index q

* The dust mass decays as ~t§
* Index & depends on the “primordial” size distribution of planetesimals
*Typical values: & ~ -0.3...-0.4 and not -1
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Lohne et al. (2008) model

observed e observed e
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A synthetic population of debris disks calculated with the model
IS in a good agreement with the Spitzer 24 and 70um statistics

1st CPS International School of Planetary Sciences Kobe, January 8, 2009 39




Individual systems: two approaches

planetesimal belt
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Individual systems: the Vega disk

Vega Debris Disk at 70 um
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Individual systems: the Vega disk

Dust Composition : Stellar Luminosity i Collisional Qutcome
f and Disk Location

Star
+  Obsenations —— |

-> poster by Sebastian Miiller

Collisional + thermal emission modeling
Parameters: stellar luminosity; disk location, extension, excitation;
dust composition; collisional outcome prescription
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Inner gaps: footprints of planets?
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Infrared excesses and images reveal EKB-sized disks,
extending from several tens AU outward, with inner gaps
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Inner gaps: footprints of planets?
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First attempts to find these planets

|
HD 35850 at 27pc 12-100 Myr I HD 705¢/3 at 70pc 30—
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8 young systems
with cold excesses
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no planets found
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Another attempt: Fomalhaut
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Another attempt: Fomalhaut

Fomalhaut
HST ACS/HRC

No data

Fomalhaut b planet

- < Background Star '
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There is more structure in resolved disks

Radial,
azimuthal,
vertical
structure:

.rings,
.gaps
.clumps
.spirals
.offsets
.warps
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Clumps of € Eri
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Clumps due to resonances with a planet

3:2 Resonance The outward migration of a Neptune mass planet (®) around
Vega sweeps many comets (¥) into the planet's resonances

A comet in 3:2 resonance orbits the star twice for
every three times that the planet orbits the star

Time: 0.0 I‘u"lyrI I2;‘1
53
32 |

0.6

PR S SN L e
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+,
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Eccentricity
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Inertial frame Rotating frame

@ Planet 20 40 60 80 100
® Cometin 3:2 resonance Semimajor axis, AU
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Not only clumps, but also rings

Dependence on planetary mass and eccentricity

No structure

cecentricity
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Dust can also form spirals

1st CPS International School of Planetary Sciences

Large grains:
stay in clumps

Medium-sized grains:
form a ring

Small grains:
spirals emanating
from clumps

Kobe, January 8, 2009
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Caution: alternative explanations for clumps and spirals

* Major collision
between
planetesimals

e “Supercomet”

e Passage of
a nearby star
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Caution: alternative explanations for clumps and spirals

* Major collision
between
planetesimals

e “Supercomet”

e Passage of
a nearby star

* A spiral-ilke pattern for ~1000 yrs
» Avalanches possible, but only for dustiest disks
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B Pic

Planets were expected:

(1) offset (2) warp (3) FEBs
(4) several rings

(5) “stream”

A 1581 B @oam s am

“FEB planet”

Planet 2

KECK

Planet 3
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debris disc

size of Saturn’s orbit around the Sun

B Pictoris b

B Pictoris
location of the star
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The hot dust problem

Example:

HD 69830
Only 2% of FGK stars
exhibit hot dust detections
(<24 umor < 10 AU)

Most of these systems with
hot dust (4 / 7) have dust
luminosities larger than
“maximum for a given age”
allowed by stationary
collisional models

Possible parent & >

body locations 1AU
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The hot dust problem: exozodis

Vega Debris Disk at 70 ur I
In
. od L L S

Artist impression of'Vegu's inner debris disk
Credit: O. Absil (A&A 452, 2006)

log § {mJly/arcsec® )

A
J Ml L |

L (1/2 Earth orbital radius)

Vega system:

Discovered a “zodiacal cloud” within 1 AU from the star
Derived 1077 Mearth in small dust grains

Requires dust production rate of ~0.01 Mearth / Myr

Incompatible with steady-state evolution: an unrealistically
large mass of the “asteroid belt”

Later on, several other exozodis with similar problems
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The planetary system of Vega: transport of planetesimals?

KB dust KB with clumps Centaurs Zodi

migrated) “Neptune” “Jupiter”
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The planetary system of ¢ Eri: transport of dust?

KB with clumps Dust transport Warm dust, but no zodi

O TR TR Ty

o

o
R R,
et
o

o
o
X
PR
o

!
!
!
!
!

SRR R
o T

\
i
5
i
i
i
3
!
i
i
i
i

L L L T

migrated) “Neptune” a known RV planet
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Alternatively, transport by dynamical instabilities?

eccentricity
0.4

0.2
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| 1:2 MMR

20

semimajor axis (AU)
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Summary

e Debris disks are optically-thin, dusty, gas-poor disks
around main-sequence stars

e Debris disks are common around those stars

e Debris disk observations reveal emission of dust
 Debris disks are direct evidence for planetesimals
e Debris disks are indirect evidence for planets

e Debris disks give clues to the formation, evolution, and
architecture of planetary systems
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