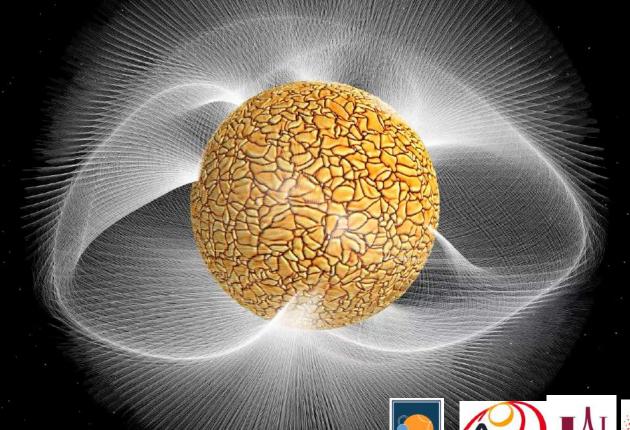
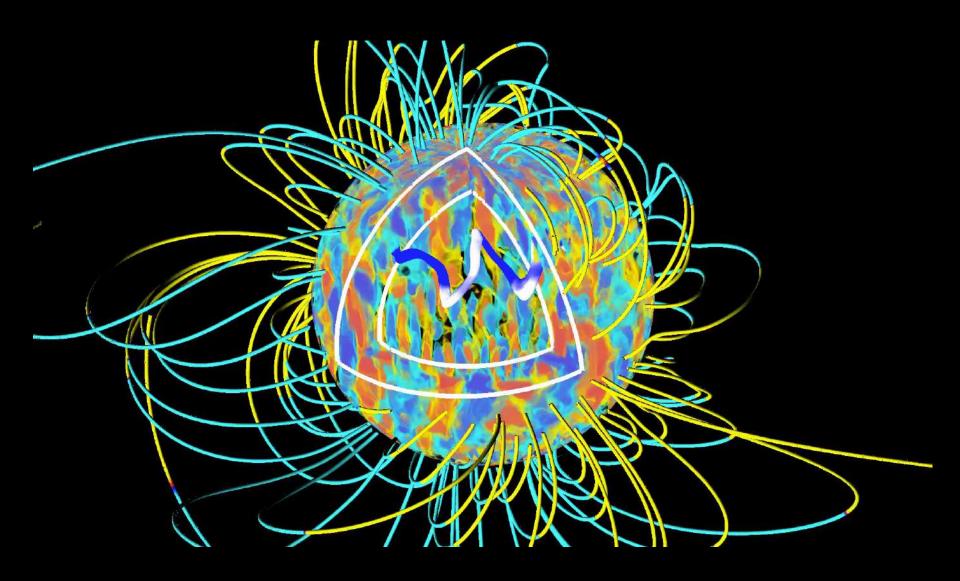
Magnetochronology of solar-type stars and the Convective Conundrum:

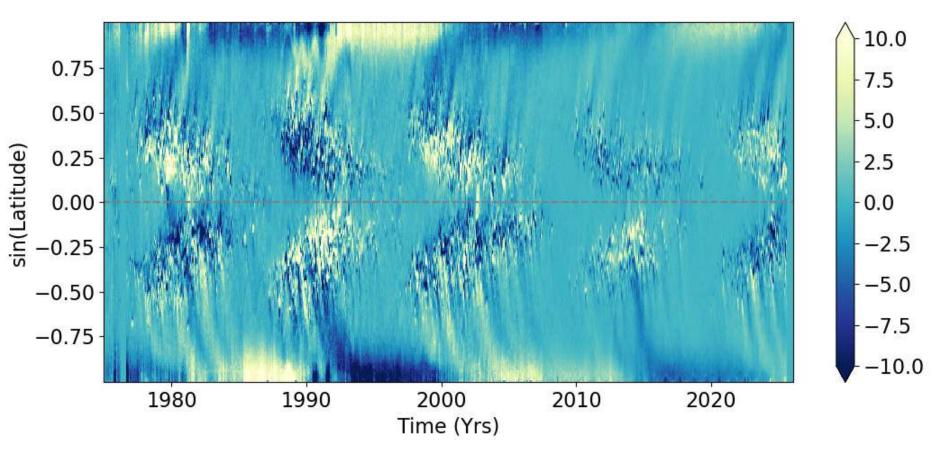
a path theory to study global solar magnetized convection Allan Sacha Brun (CEA Paris-Saclay/ISEE Nagoya) and the Whole sun Team



An exemple of cyclic dynamo action

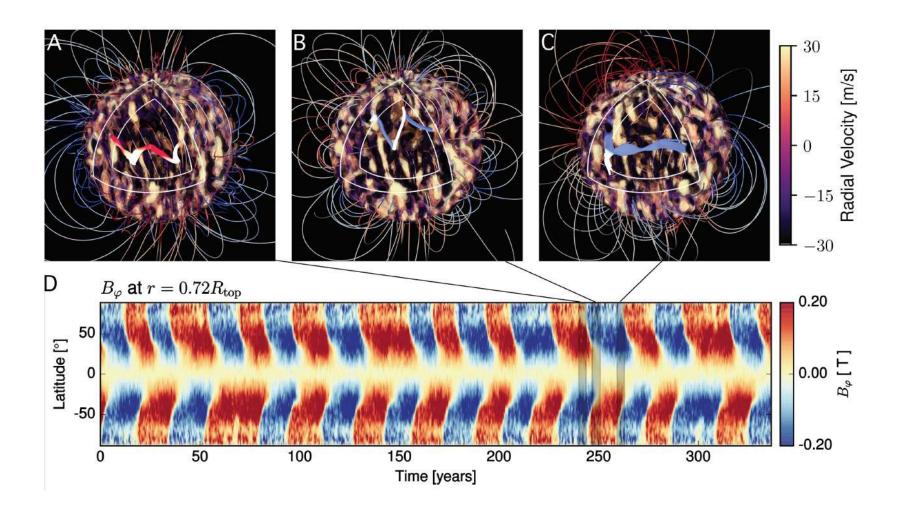


Solar buttefly Diagram

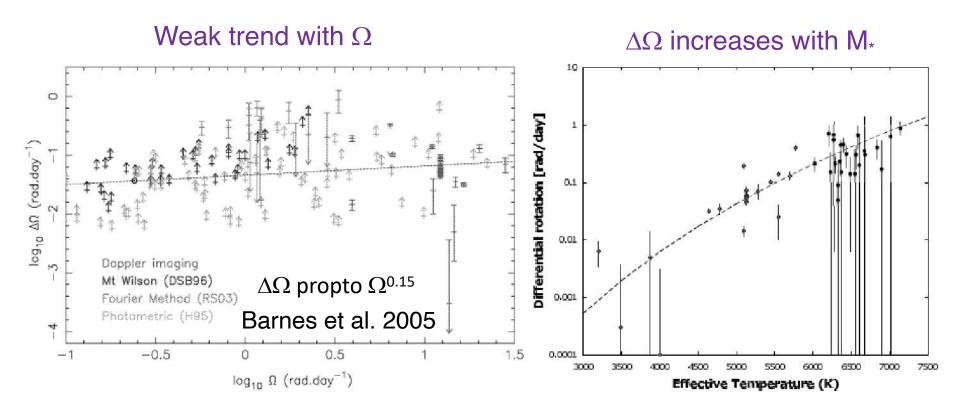


Butterfly diagram: sunspot migration towards equator during 11 yr cycle

Succesful Cyclic Dynamo with long cycle period



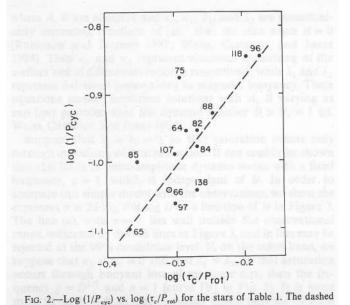
Trends in Differential Rotation with Ω & Mass (Teff)



In Donahue et al. 1996: $\Delta\Omega$ propto $\Omega^{0.7}$ So currently exponent n in $\Delta\Omega$ propto Ω^n ranges [0.15, 0.7]

Confirming these observational scaling is key

Solar Type Stars (late F, G and early K-type)

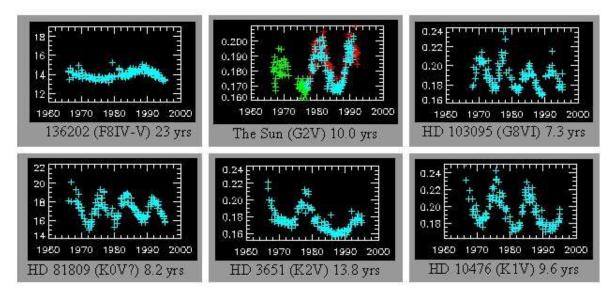


line is a linear least squares fit to the data

Noves et al. 1984

In stars activity depends on rotation & convective overturning time via Rossby nb Ro= P_{rot}/τ $<R'_{HK}> =Ro^{-1}$, $P_{cvc}=P_{rot}^{1.25+/-0.5}$

Wilson 1978 Baliunas et al. 1995



Call H & K lines , <R'_{HK}>

Over 111 stars in HK project (F2-M2):

31 flat or linear signal

29 irregular variables

51 + Sun possess magnetic cycle

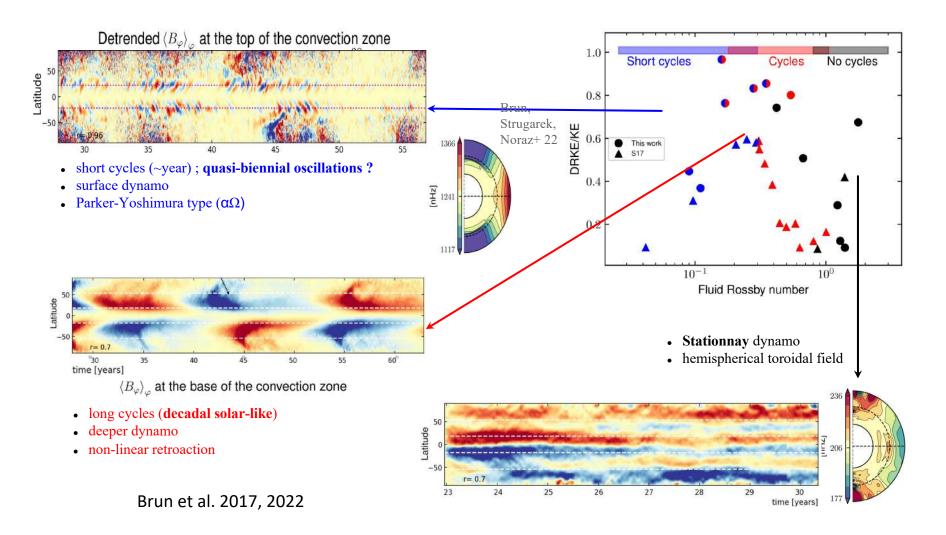
Much more coming in Asteroseismology Era (Mike's talk)

Quid of Star-Planet Interaction and cyclic activity?

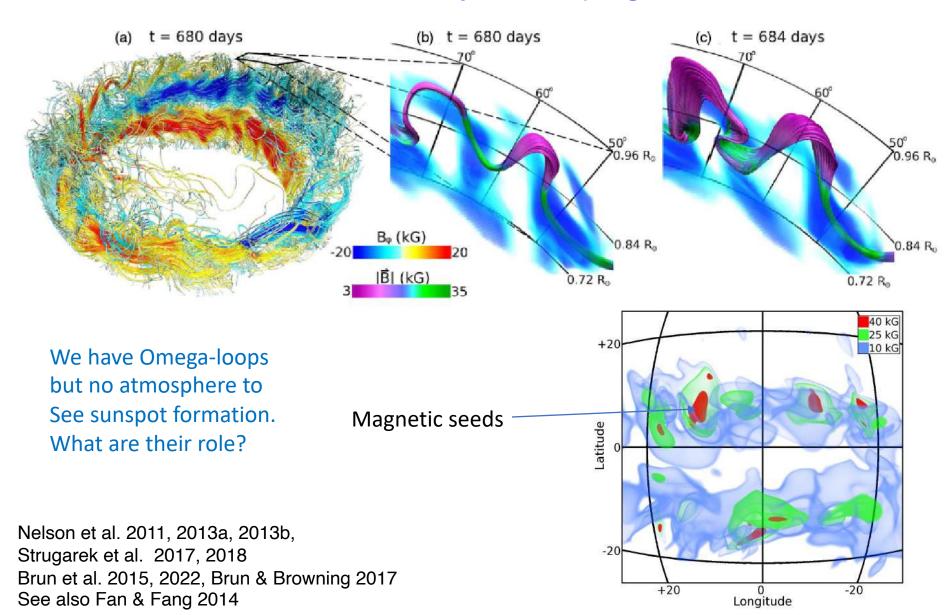
Magnetic cycles of the planet-hosting star τ Bootis

J.-F. Donati, 1* C. Moutou, 2* R. Farès, 1* D. Bohlender, 3* C. Catala, 4* M. Deleuil, 2* E. Shkolnik, ^{5*} A. C. Cameron, ^{6*} M. M. Jardine ^{6*} and G. A. H. Walker ^{7*}

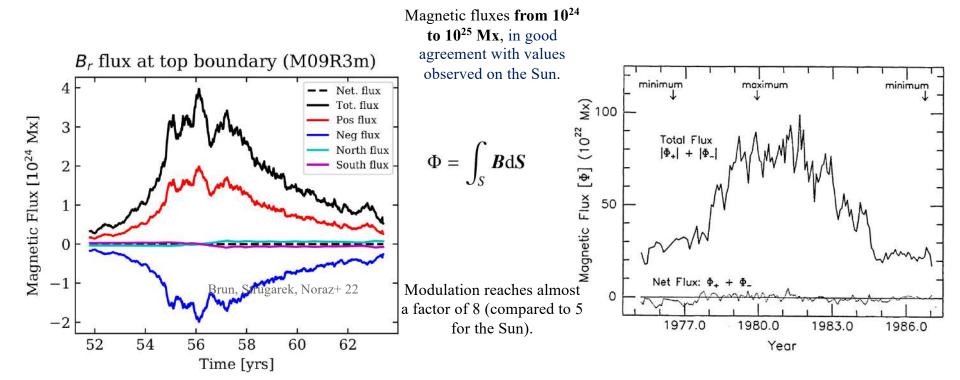
Rotational and magnetic transitions



Going Beyond the introduction of flux tube: Self-consistent buoyant Loops generations



Magnetic Flux in long cyclic case: comparison with observations

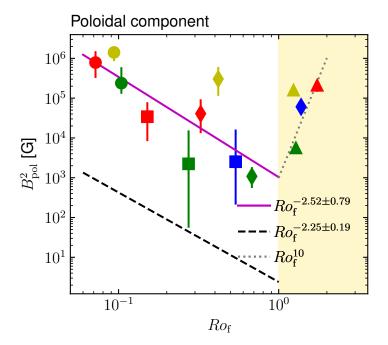


Magnetochronology of Solar-type Stars

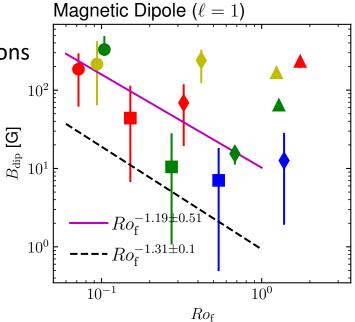
=> good qualitative agreement with observations

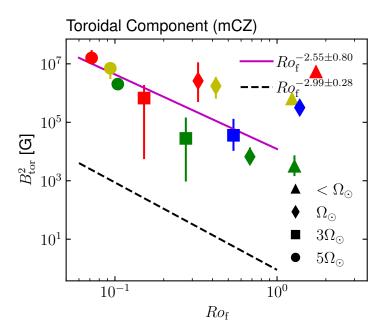
See et al. 2015, 2019 Vidotto et al. 2014

Noraz, Brun et al. 2024, A&A

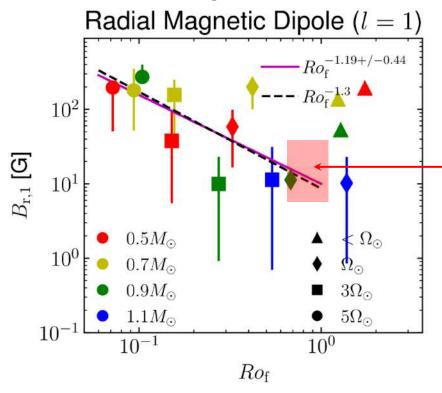


Augustson et al. 2019: $B_{bulk} \sim Ro^{-0.5}$ Large scale field does not follow same trends





Recovering Observational Trends



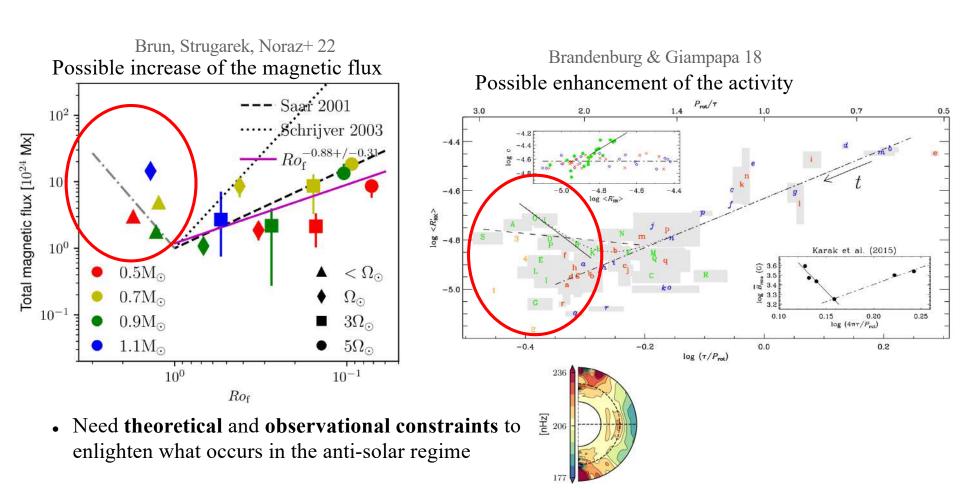
• The dipole decreases but does not disappear

However, there may be a minimum around the solar Rossby value

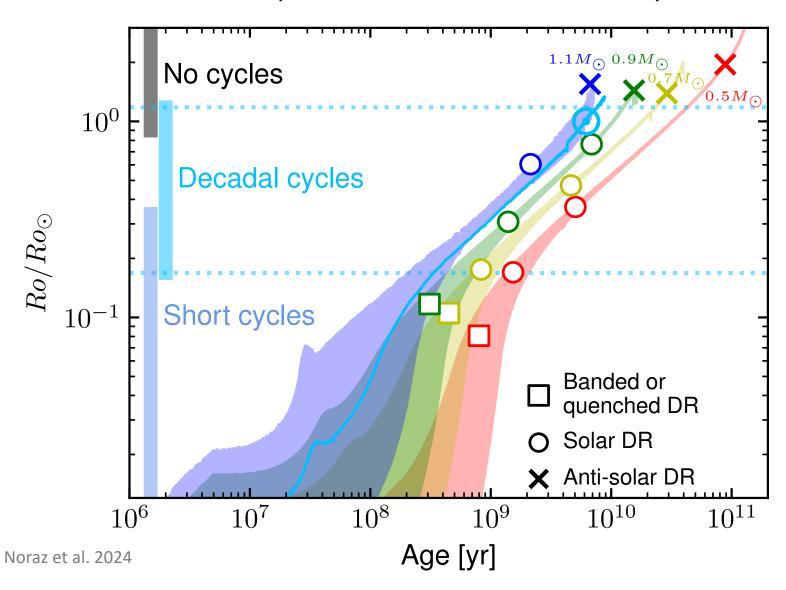
 Can a star be trapped in this regime by a combination of magnetism and mass loss rate?

$$\dot{J} \propto \dot{M} \Omega_* \langle r_A \rangle^2$$

Larger global field in slowly rotating stars?



A plausible « Sun in time » story



Trends of the stellar dynamo simulation are qualitatively correct,
But the solar case is shifted in parameter space

- ⇒ Convective conundrum
- + The stellar convective dynamo solutions do not exhibit sunspot/starspots.... Where are they, are they needed?

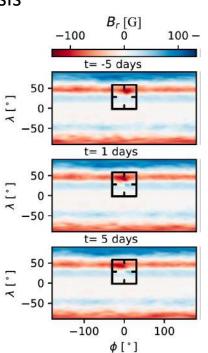
Note: In Cameron, Schunker, Brun et al. 2025, we have made a first analysis of flux emergence events in such convective dynamo and have found Interesting bipolar events but not strong enough to perturb convection

and lead to progenitor sunspot/starspot.

A&A, 701, A277 (2025) https://doi.org/10.1051/0004-6361/202553844 © The Authors 2025 Astronomy Astrophysics

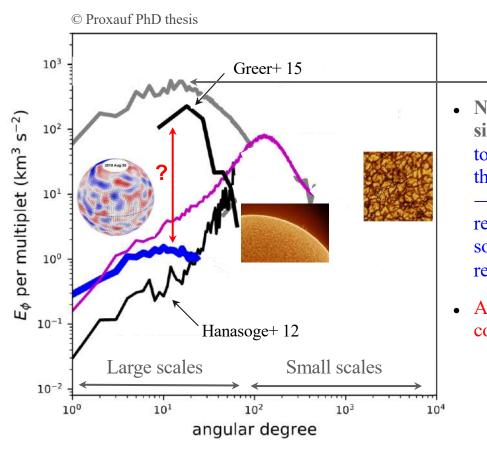
Closing the solar dynamo loop: Poloidal field generated at the surface by plasma flows

R. H. Cameron^{1,4,*}, H. Schunker², A. S. Brun³, A. Strugarek³, A. J. Finley³, W. Roland-Batty², A. C. Birch¹, and L. Gizon^{1,4}



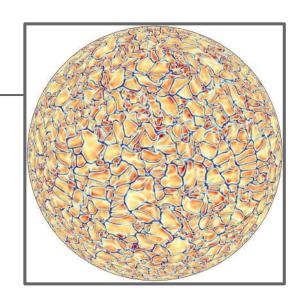
Convective Conundrum

Solar case is qualitatively correct, but slightly misplaced in parameter space. Effective Rossby too high.



• Numerical simulations as a tool to modelize the process

→ challenge to reach realistic solar parameter regimes



 Actual mismatch between observational results concerning the large scales contribution

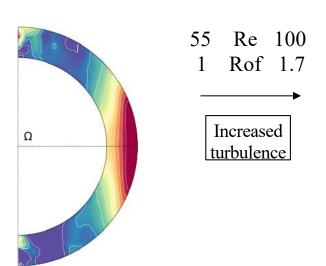
How can solar convection models be calibrated to study stellar convection?

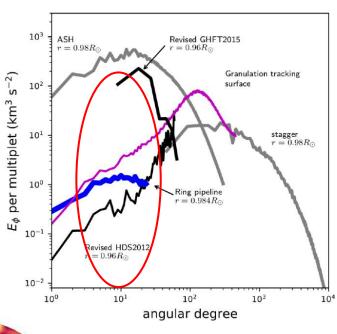
Convective Conundrum

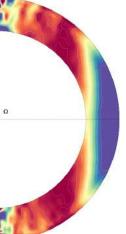
 Current mismatch between global models and helioseismic inversion regarding giant convective cells

• Overestimation of the Rossby number in global models,

• establishing anti-solar DR in turbulent solar models



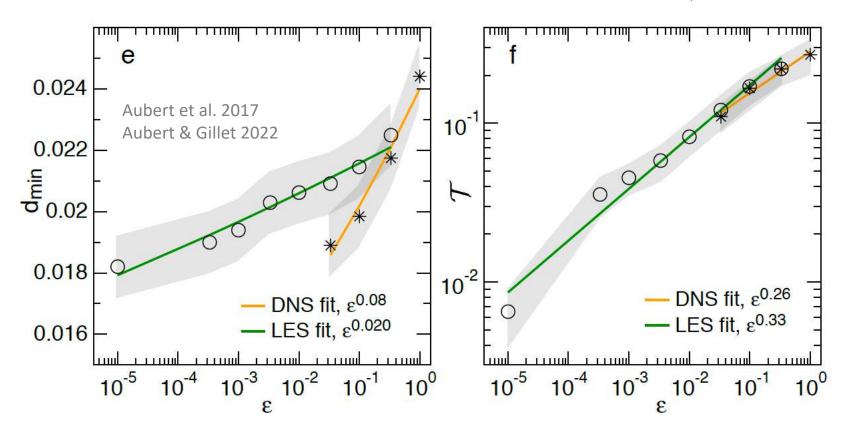




Path parameter approach: The geodynamo case

Path theory in the Earth convection setup:

The calculations do not represent a systematic sampling of the parameter space, but are rather chosen to follow a path connecting the classical numerical models such as the original CE dynamo (Aubert et al. 2013) to Earth's core conditions ($\epsilon = 10^{-7}$)



Shown are results from hyperdiffusive solutions along the path (LES or large-eddy-simulations) up to 71 percent of the path ($\varepsilon = 10^{-5}$), and the direct numerical simulations (DNS) up to 21 percent of the path ($\varepsilon = 3.3 \ 10^{-2}$). (fixed Rm and Re, decreasing Ekman number).

On Rossby and Nusselt numbers

• Two solutions are commonly used by the community to recover the solar DR:

$$Ro = \frac{\text{Advection}}{\text{Coriolis}} \sim \frac{v}{2\Omega R_*}$$
Reduced Luminosity
[e.g. Hotta+ 14] \rightarrow L_{*}/18

Increased Rotation rate
Emeriau-Viard & Brun 17
Hotta+ 18

- Recent highlight of magnetic contribution:
- →significant retroaction of the small-scale dynamo (Hotta+ 22)
- We propose to **control the Nusselt number** Nu and to keep L_{sun} & Ω_{sun} ! (Noraz et al. 2025) \rightarrow How much energy does the convection transport?

$$Nu = \frac{\text{Convection} + \text{Radiation}}{\text{Radiation}}$$

A Nusselt controlled Path at fixed Rossby Ro nb and increasing turbulence Reynolds Re nb

$$\tau_{\Omega} = 1/2\Omega$$

$$\tau_{u} = L/u$$

$$\tau_{v} = L^{2}/v$$

Ro= τ_{Ω}/τ_{u} we want that number fixed

Re = τ_v/τ_u we want that number Big

In today's achievable parameter regime, if you reduce viscosity to increase Re, you get an increase of u and hence a decrease of τ_u and you change Ro! not good => convective conundrum

So we need to control the amplitude of u as we increase Re by lowering the viscosity $\boldsymbol{\nu}$

A Nusselt controlled Path at fixed Rossby Ro nb and increasing turbulence Reynolds Re nb

We need to control u but u is mostly controlled by the imposed luminosity: u $^{\sim}$ L_{conv} $^{1/3}$ and in non diffusion free limit also by v

=>
$$U \sim L_{conv}^{1/3} v^{-\alpha}$$
 ($\alpha \sim 0.2$ – exact value depends on stratification N_{ρ})

So in order to compensate for v, one needs to adapt L_{conv}

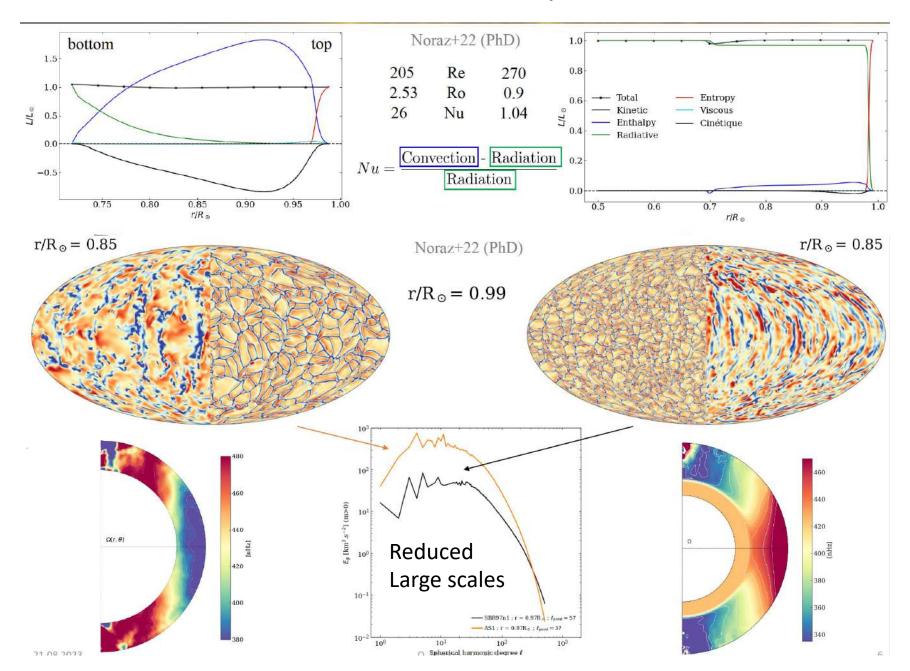
One way is to control the Nusselt nb: $Nu = (L_{conv} + L_{diff})/L_{diff}$

We will follow that numerical path as a fluid mechanics experiment

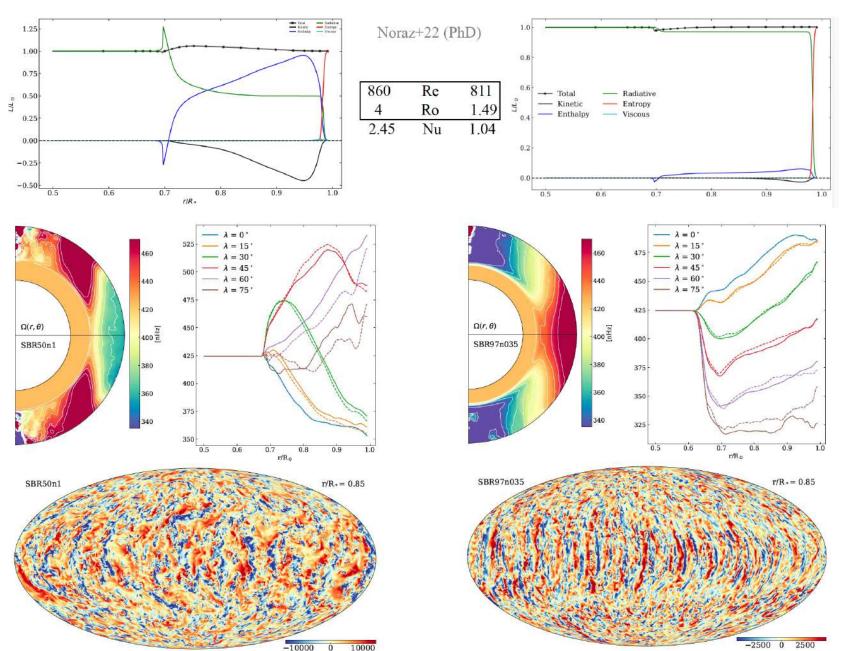
$$\begin{aligned} &\mathsf{L}_{conv} = \epsilon \; \mathsf{L}_{sun} \text{ , } \tau_v \!\! = \epsilon^{-\beta} \; \tau_{v0} \; \text{ , } \tau_u \! = \tau_{u0} \text{ , } \tau_\Omega = \tau_{\Omega 0} \, \text{ , } \mathsf{R}_e = \epsilon^{-\beta} \; \mathsf{R}_{e0} \; \text{ , } \mathsf{L}_{diff} = \text{ (1- ϵ)} \mathsf{L}_{sun} \\ &\mathsf{a \; priori} \; \beta = 3 \; \alpha \end{aligned}$$

$$\tau_{\Omega} = 1/2\Omega$$
; $\tau_{U} = L/u$; $\tau_{V} = L^{2}/V$

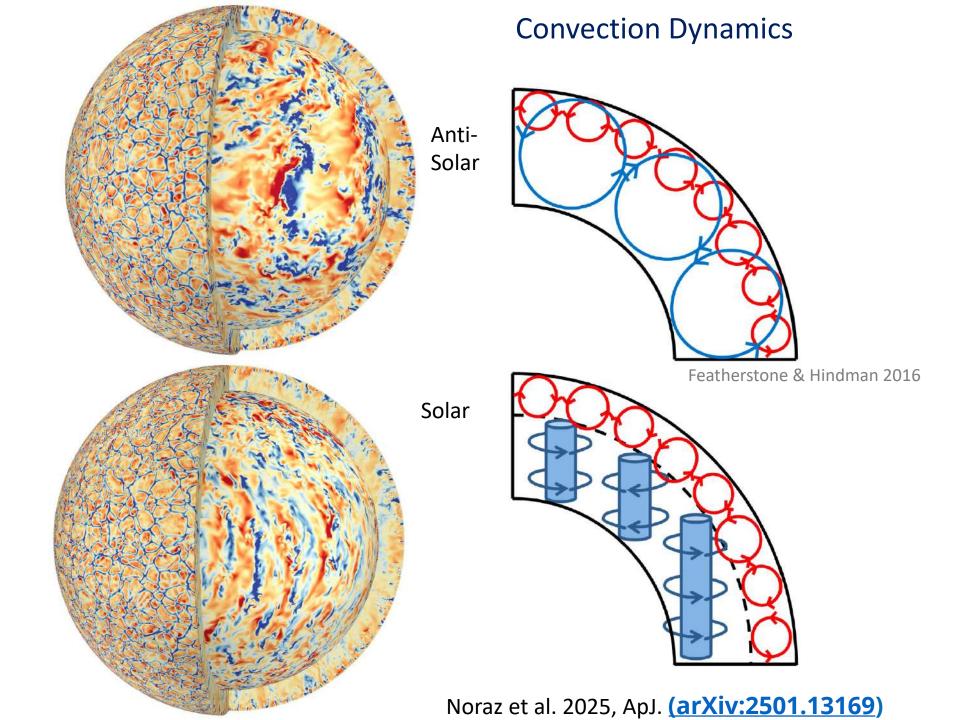
Nusselt Controlled Experiment: Re~200+



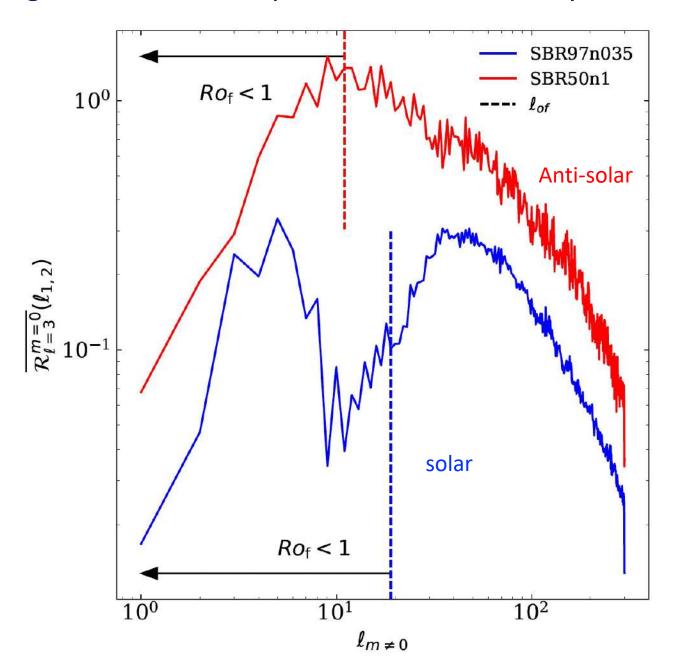
Higher Reynolds Number cases Re ~800+



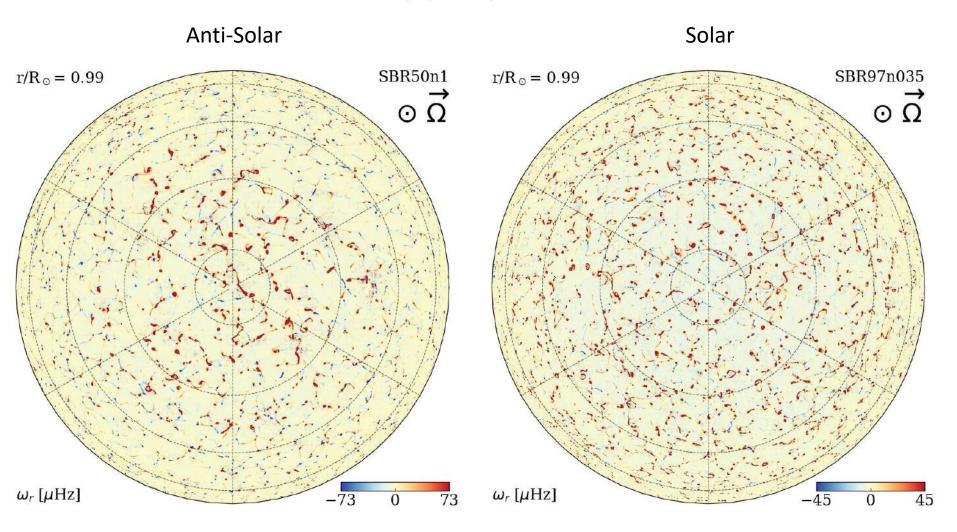
Noraz, Brun, Strugarek 2025, ApJ

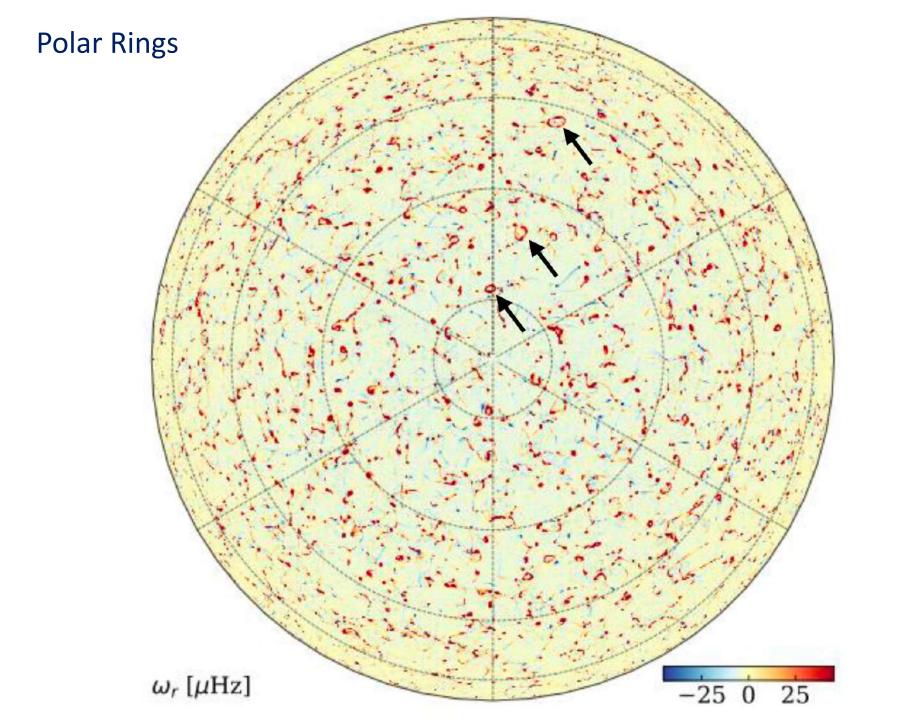


Angular momentum spectral transfers via Reynolds stresses



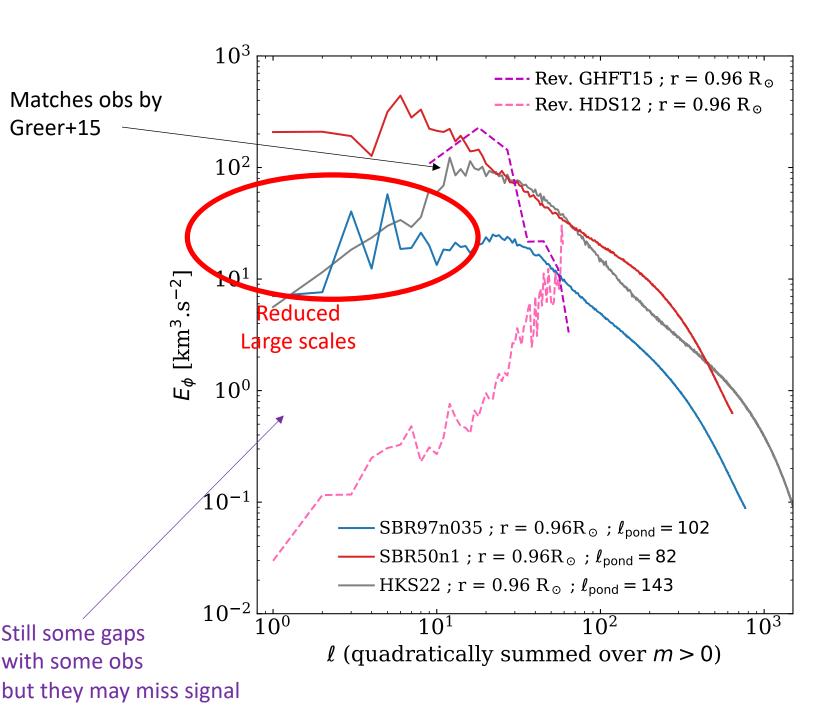
Polar View





Confronting simulations to observational (SDO) constraints

- Spectra
- m=1 Rossby mode
- Adiabaticity



Inertial Waves in the Sun

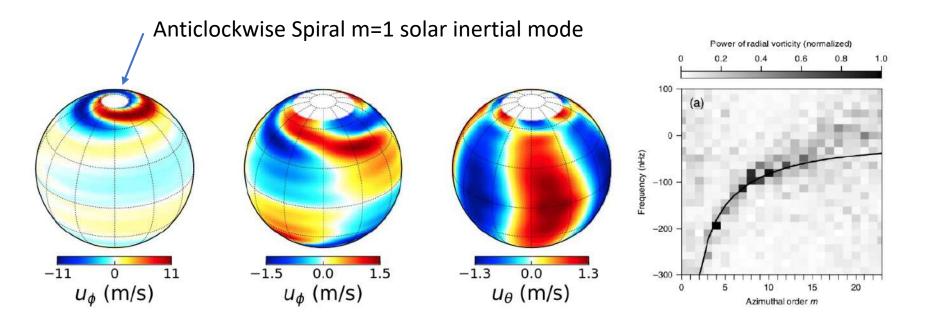
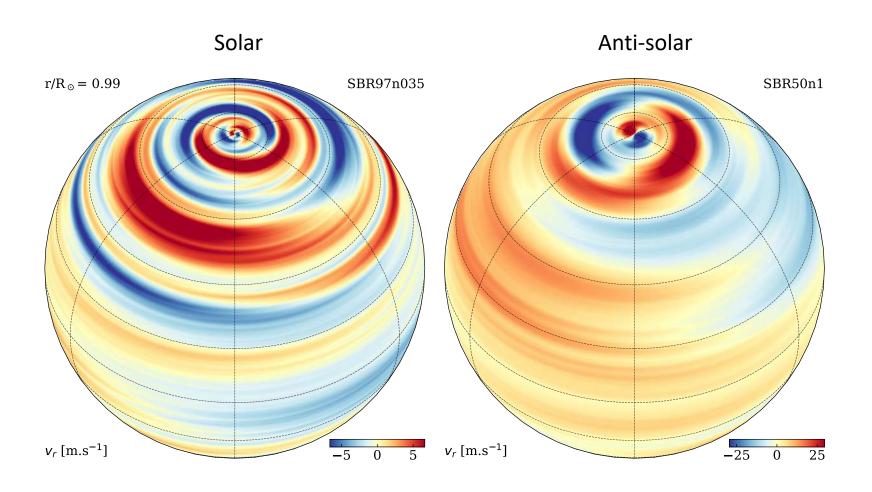


Figure 2.32 – From left to 2nd panel to the right we show: the m = 1 high-latitude spiral mode at -86 nHz, the m = 2 mid-latitude mode at -73 nHz (Gizon et al., 2021), the m = 3 equatorial (sectoral) Rossby mode at -269 nHz (Löptien et al., 2018a), adapted from (Gizon et al., 2024). Rightmost panel: Power spectrum of radial vorticity from local tracking of granulation, with the sectoral ($\ell=m$) Rossby mode dispersion relation ($\omega=-2\Omega_{\odot}/(m+1)$) overplotted in black (Löptien et al., 2018a).

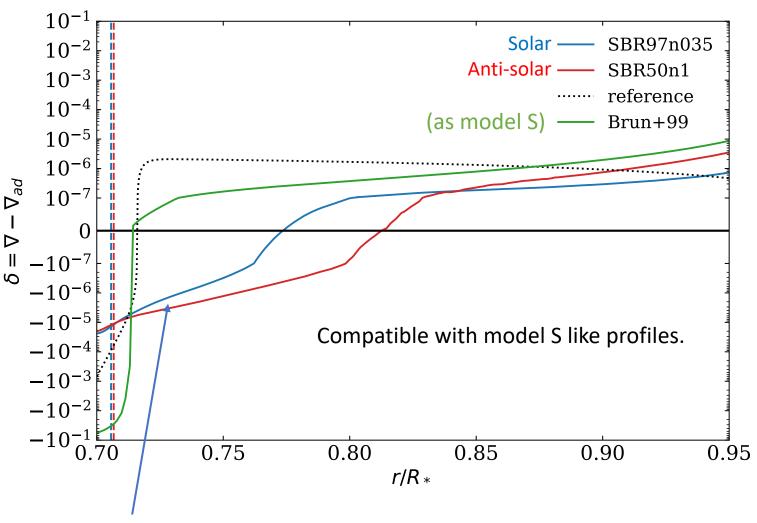
m=1 Rossby mode



Correct sign of the spiral

uncorrect sign of the spiral

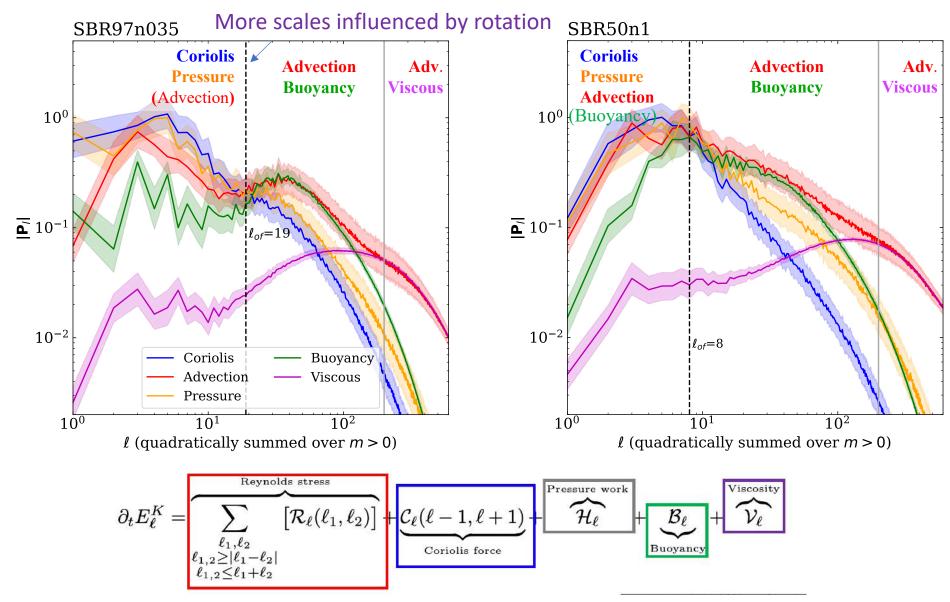
Adiabaticity Profiles in the simulations



subadiabatic region in both models, unclear you can discriminate....

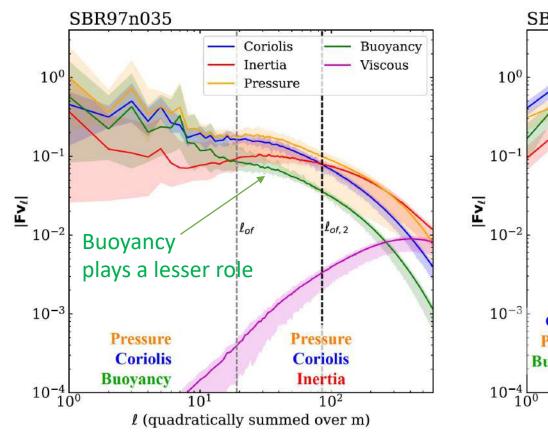
Kinetic Energy Diagnostic

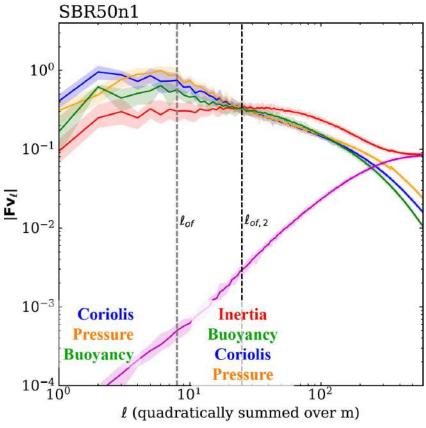
Anti Solar



(Strugarek et al. 2013, Noraz et al. 2025)

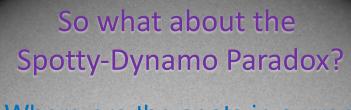
Vertical Force Balance





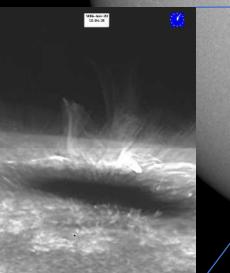
$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} = -\nabla \overline{\omega} - \frac{S}{c_p}\mathbf{g} - 2\Omega_* \times \mathbf{v}$$
$$-\frac{1}{\overline{\rho}}\nabla \cdot \mathbf{D} - [\nabla \overline{\omega} + \overline{\omega}\nabla \ln \overline{\rho} - \mathbf{g}],$$

$$|\mathbf{F}_{\ell}| = \sqrt{\int_{t} \int_{r} \mathbf{f}_{\ell}^{2} r^{2} dt dr / \int_{t} \int_{r} r^{2} dt dr}$$

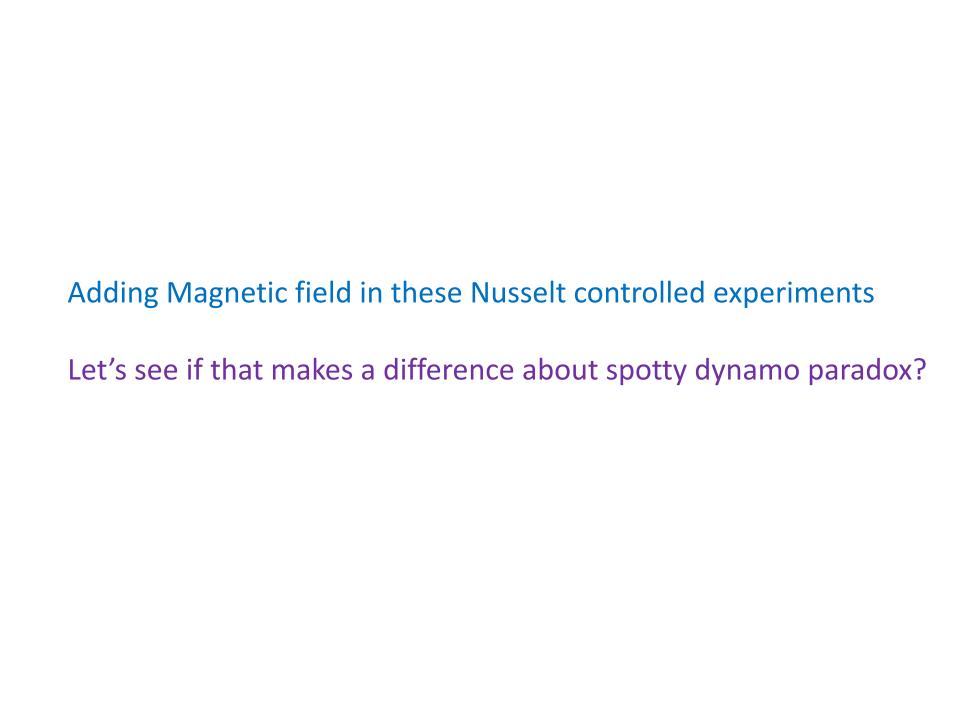


Where are the spots in current convective dynamo simulations?

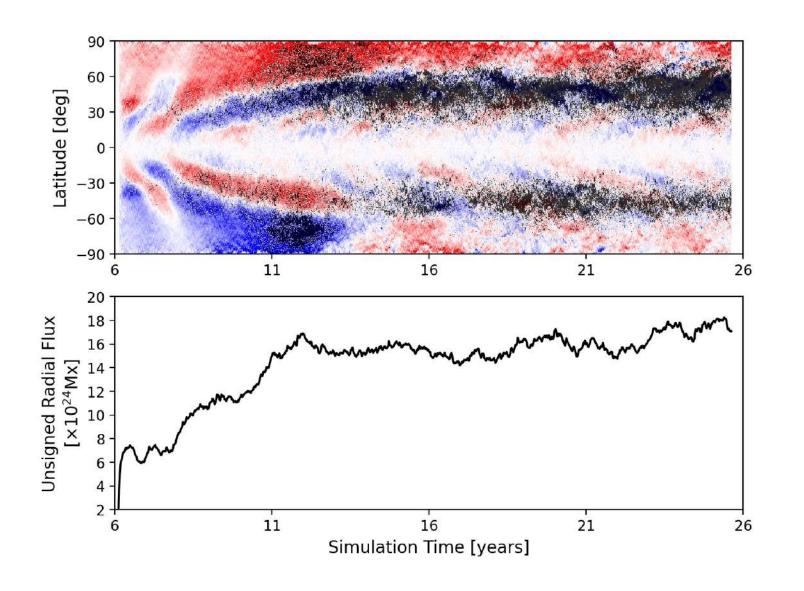
Are they really needed to get the 11yr cycle?



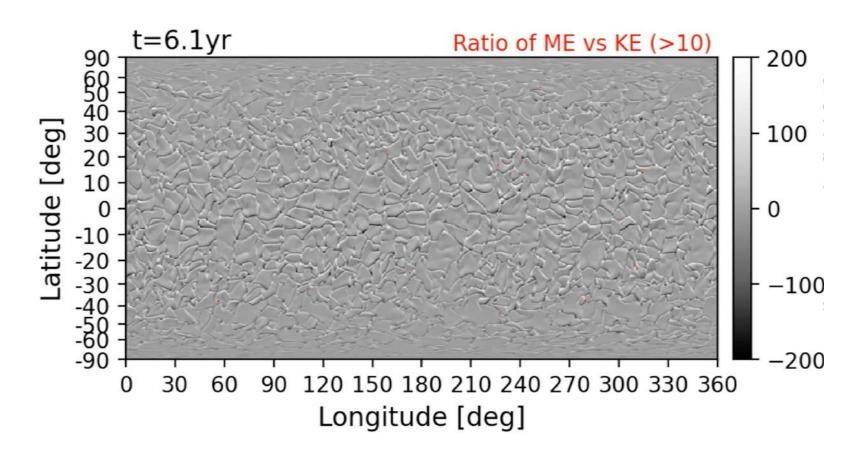
Brun et al. 2015, 2022



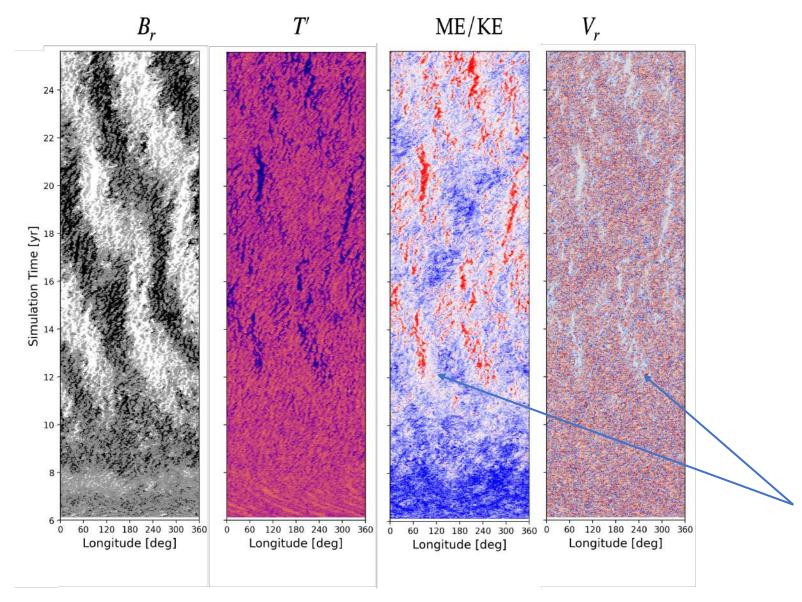
Current Evolution Stage of the dynamo solution simulation



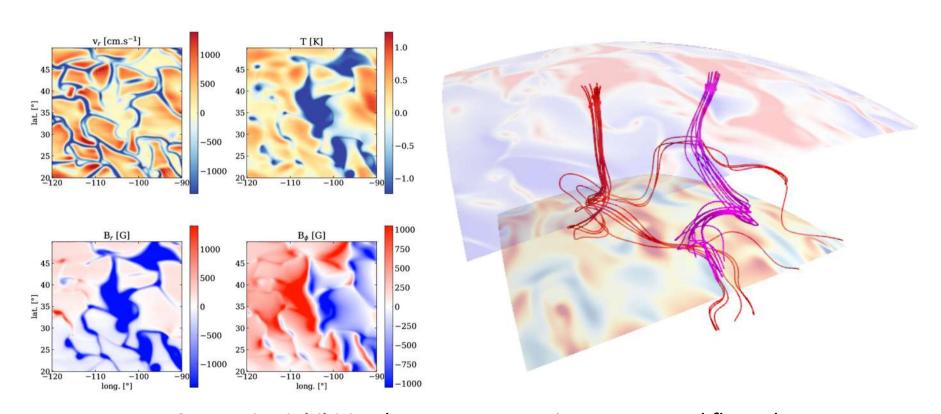
Progressive Emergence of Strong and Large Events



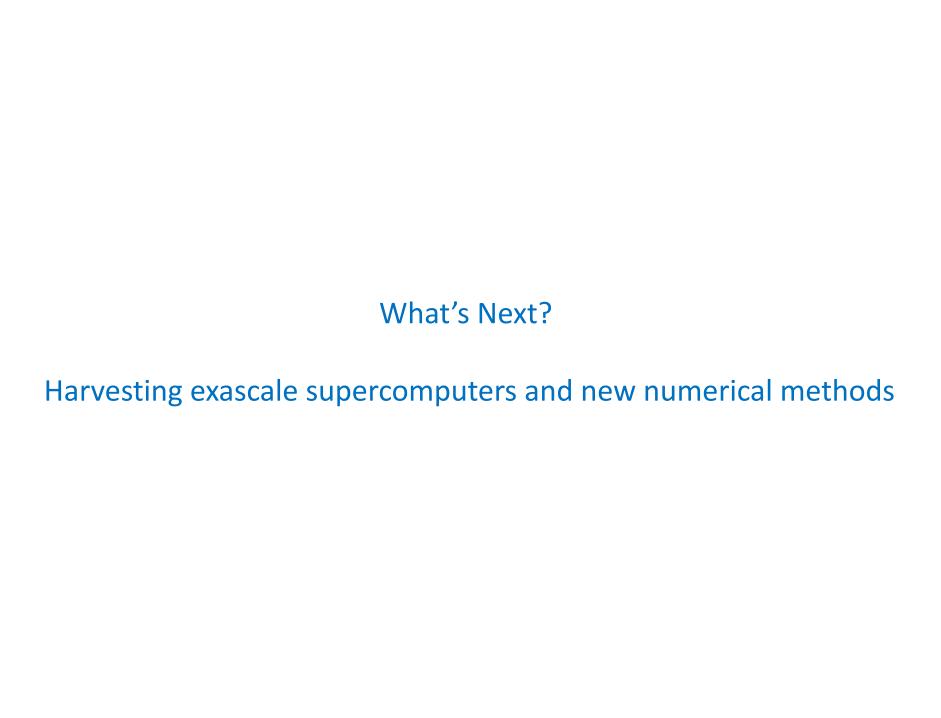
Time-longitude diagrams



3D view on a stronger magnetic feature



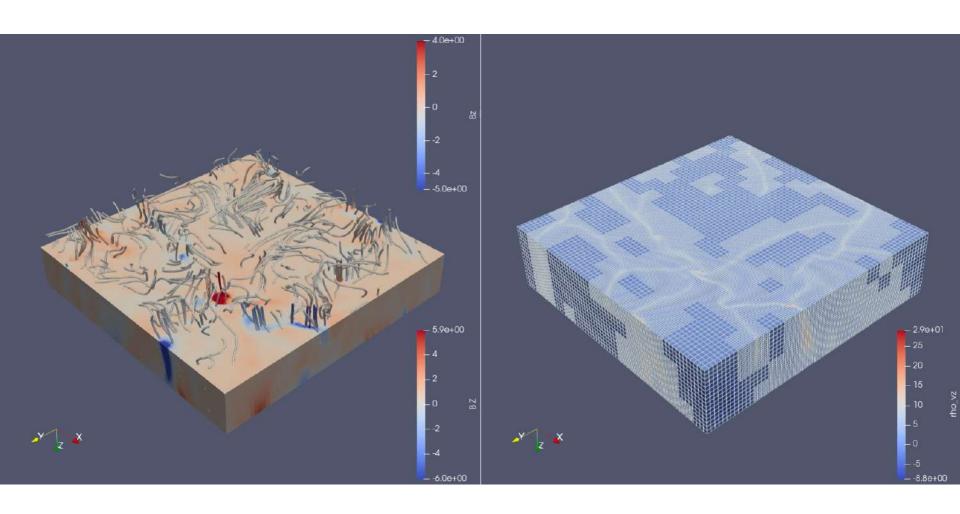
Convective inhibition by strong magnetic concentrated flux tubes Very promissing for progenitor « sunspot » formation



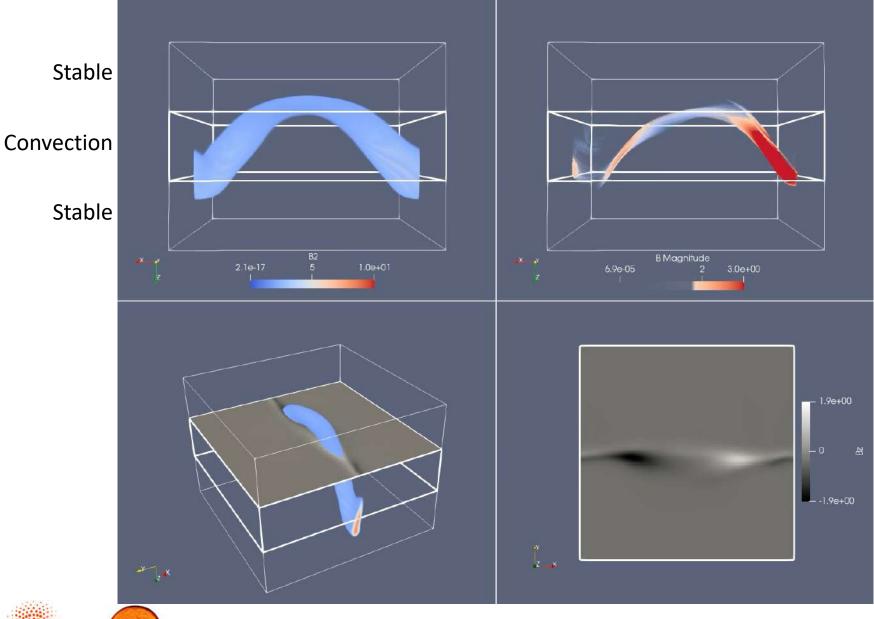
In 2017, we (A.S. Brun, L. Gizon, M. Carlsson, V. Archontis, F. Moreno-Insertis) Designed a synergy ERC project to attack some of these difficult solar physics pb.

Every March since 2020 we have a 3 weeks program in Paris, contact us if you wish to attend => New open source Dyablo Code – some recent updates.

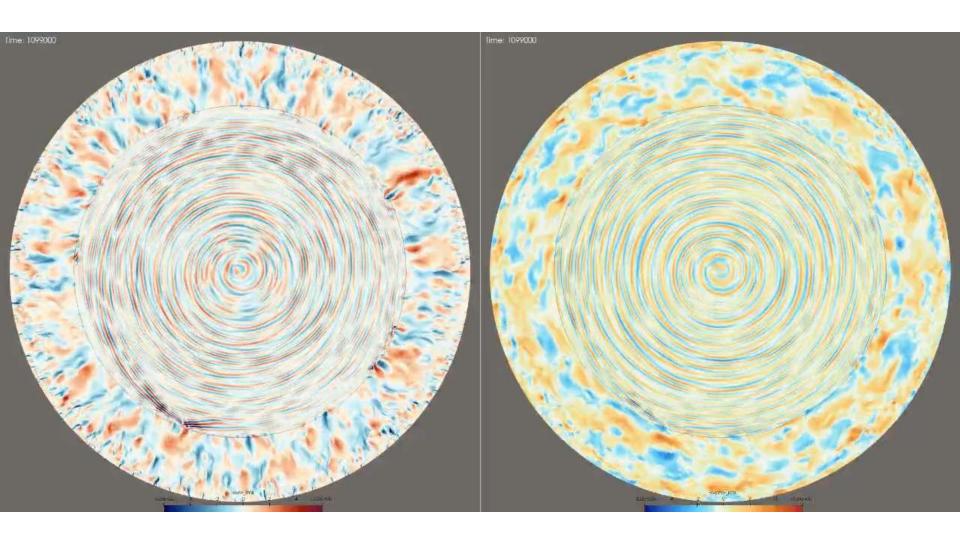
3D AMR Dynamo Convection simulation with Dyablo



3D Tri-layers Convection + Flux Emergence simulation with Dyablo

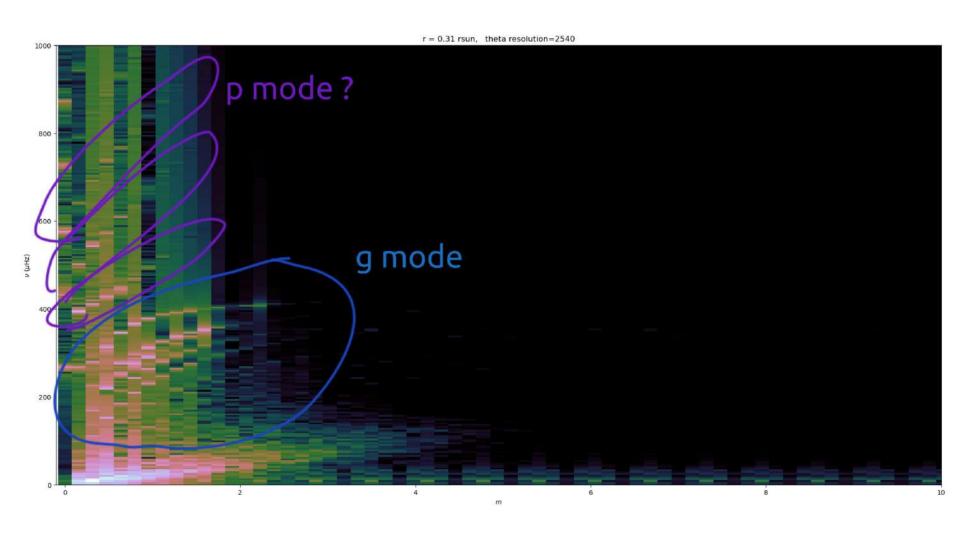


Solar Convection, Gravity and Acoustic Waves in fully compressible Dyablo Whole Sun Simulations

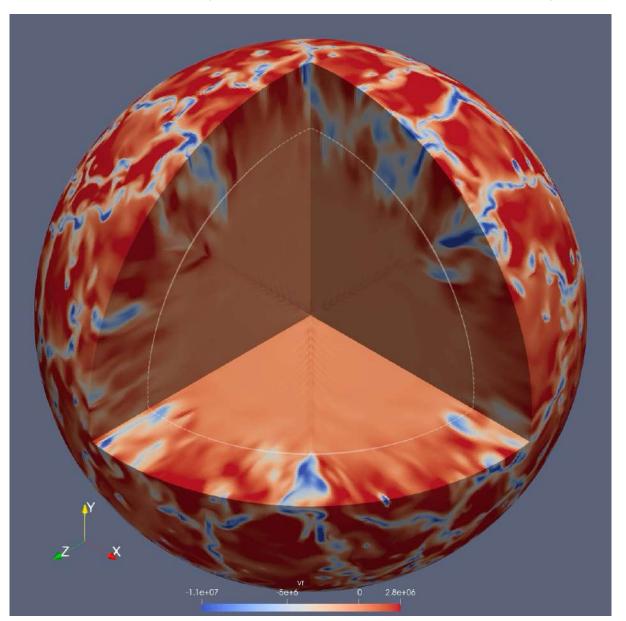


Doboele, Brun, Delorme et al. 2026, in prep

P and G modes in a Solar simulations



3D Convection spherical simulation with Dyablo



Conclusions (I)

- 1) In solar/stellar dynamo we are able to get decadal long cyclic solutions, that exhibits intense Magnetic wreaths that lead to the formation of self-consistent Omega-loop formation and to Flux emergence events with interesting properties (such as tilt). They also agree with Zeeman-Doppler Imaging observational trends (B(Ro) propto Ro^{-1.4}).
- 2) A Magnetochronology story can be presented where yound stars have banded/cyclindrical differential rotation and short period magnetic cycles, stars like the Sun decadal long cycles and slowly old rotating stars a direc tdynamo (no cycles) and a retrograde equator (anti-solar)
- 3) However, these solutions do not possess sunspot/starspot though and are slightly misplaced in Rossby number parameter space.

Conclusions (II)

- 4) With a control of Nusselt number, we are able to reproduce (maintain) realistic solar differential rotation at high Reynolds numbers
- 5) We may see that the Sun is running deep a C-I balance rather than a CIA (in hydro). This may imply that in MHD case it is a MIC and not a MAC balance that dominates (work in progress)
- 6) In the Nusselt controlled experiement, we start seeing very interesting intense magnetic field concentration that inhibits surface convection, these new generation dynamo solution are very promising, stay tuned !!!

Reynolds stresses in spectral space

$$\mathcal{R}_{\ell}(r,\ell_{1},\ell_{2}) = \bar{\rho} \int_{S} [\boldsymbol{v}_{\ell_{1}} \cdot \boldsymbol{\nabla}(\boldsymbol{v}_{\ell_{2}})]_{\ell} \cdot \boldsymbol{v}_{\ell} d\Omega,$$

$$\overline{\mathcal{R}_{\ell=3}^{m=0}}(\ell_{1,2}) = \frac{1}{(2\ell+1)\mathcal{R}_{\ell}^{m>0}} \sum_{\substack{\ell_{2,1} \\ \ell_{1}-\ell_{2}|\leq \ell \leq \ell_{1}+\ell_{2} \\ m_{1}+m_{2}=0; m_{1}>0, m_{2}>0}} |\mathcal{R}_{\ell=3}(\ell_{1},\ell_{2})|,$$
where
$$\mathcal{R}_{\ell}^{m>0} = \sum_{\substack{\ell_{1},\ell_{2} \\ m_{1}+m_{2}=0; m_{1}>0, m_{2}>0}} \mathcal{R}_{\ell=3}(\ell_{1},\ell_{2}).$$