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• The magma ocean cooling process is crucial  
in determining the surface environment (Hamano et al., 2013)


• What factors determine the cooling timescale?

proto-atmosphere
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• capture of solar nebular gas
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Blanketing Effect of proto-atmosphere
Outgoing Longwave Radiation (OLR)

Internal heat

Blanketing effect  
through radiative absorption 
• Thermal radiation absorbed  
→ OLR & MO cooling suppressed


• Effect of H2O atmosphere

• MO lifetime ~1 Myr at Earth  

(e.g., Hamano et al., 2013; Lebrun et al., 2013)

• Effect of H2 atmosphere

• MO lifetime becomes > 100 Myr 

as long as H2 with ~1MTO exists  
(Lichtenberg et al., 2021)

• due to H2-H2 CIA
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• MO lifetime ~1 Myr at Earth  

(e.g., Hamano et al., 2013; Lebrun et al., 2013)

• Effect of H2 atmosphere

• H2 can be a major species on proto-Earth

• H2O reduction by Fe (H2O+Fe→H2+FeO)

• Capture of the solar nebular gas
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Blanketing Effect of proto-atmosphere

Blanketing effect  
through radiative absorption 
• Thermal radiation absorbed  
→ OLR & MO cooling suppressed


• Effect of H2O atmosphere

• MO lifetime ~1 Myr at Earth  

(e.g., Hamano et al., 2013; Lebrun et al., 2013)

• Effect of H2 atmosphere

• MO lifetime becomes > 100 Myr 

as long as H2 with ~1MTO exists  
(Lichtenberg et al., 2021)

• due to H2-H2 CIAPurpose of this study 

To clarify the scattering blanketing effect on the planetary radiation and magma ocean 
cooling under Earth’s proto-atmosphere composed of H2O and H2



Atmosphere-Interior model
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Atmospheric structure 
• Composition and mass

• H2O (non-ideal gas) + H2 (ideal gas) 

• Mass of H2O and H2: free parameters


• Hydrostatic

• Temperature profile

• Surface temperature: varied (200-4000 K)

• following the adiabatic lapse rate

• H2O-saturated region: moist adiabat

• unsaturated region: dry adiabat


• constant at the skin temperature

• Boundary

• Top: Altitude at 1 Pa

• Bottom: Planetary surface
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Interior’s structure 
• Hydrostatic

• Temperature profile

• following the adiabatic lapse rate

• considering the latent heat 

in the partially molten zone

• Phase change

• Solidus and liquidus temperature

• fitting to the experimental data  

of peridotite is adopted (e.g., Nikolaou et al., 2019)

• Melt fraction

• 


• Boundary

• Top: Planetary surface

• Bottom: Core-mantle boundary

ϕ = (T − Tsol)/(Tliq − Tsol)
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Partitioning of volatiles 
• 


• Solubility equilibrium  
between atmosphere and melt


• Constant distribution coefficient  
between melt and solid (=0.01)

kiXiMsol + XiMliq +
4πR2

p

g
μi

μ̄
Pi(Xi) = X0M0

Thermal evolution 
• 


• The heat flux from the magma ocean 
is given by the difference between OLR 
and incoming net solar radiation


• Solar flux: 0.7 times the present (Gough, 1981)

• Surface albedo: 0.2 (Kasting, 1993; Kopparapu et al., 2013)

r2ρ (Cp + ΔH
dϕ
dt ) dT

dt
= ∂

∂r
[r2(FSun − FOLR)]
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• Absorption 
• H2O line absorption

• Range: 1-30000 cm-1

• Voigt line profile 

• referring to HITEMP (Rothman et al., 2010)


• H2O continuum absorption

• Range: 1-20000 cm-1

• applying the MT_CKD model (Mlawer et al., 2012; 2023)


• H2-H2 collision-induced absorption

• Range: 1-20000 cm-1

• referring to Borysow’s database (Borysow et al., 2001)
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• Scattering 
• Rayleigh scattering by H2 and H2O


• Planetary albedo 
• (Upward scattered solar flux at the top) 

÷ (Incoming solar flux)
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• Calculation method 
• Line-by-line calculation (Wordsworth et al., 2017)

• Range: 1-30000 cm-1

• Resolution: 1 cm-1


• The atmosphere is vertically divided into 
500 layers from the ground to the top

• The grids are equally spaced  

on a logarithmic scale of pressure

• The pressure at the top is 1 Pa



OLR (pure H2O atmosphere)
Total Per wavenumber (1NTO, 3000 K)

• The scattering blanketing effect becomes significant as surface P and T increase 
• High P → Scattered doward flux increases

• High T → Thermal radiation flux increases in high wavenumbers, where Rayleigh scattering is effective



Vertical profile (pure H2O atmosphere, 1NTO)
Temperature Optical depth Planetary radiation flux
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• The scattering blanketing effect becomes significant as surface P and T increase 
• High P → Scattered doward flux increases
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OLR (H2-H2O atmosphere, NH2/NH2O=1)
Total Per wavenumber (1NTO, 3000 K)

• The scattering blanketing effect becomes significant as surface P and T increase 
• High P → Scattered doward flux increases

• High T → Thermal radiation flux increases in high wavenumbers, where Rayleigh scattering is effective



Vertical profile (H2-H2O atmosphere, 1NTO)
Temperature Optical depth Planetary radiation flux



Planetary albedo (NH2+NH2O=NTO)

• (Planetary Albedo)  
= (Upward scattered solar flux) 
   ÷ (Incoming solar flux)


• Planetary albedo increases 
with H2 mixing ratio

• due to a decrease in absorption 

of stellar radiation by H2O



Equilibrium surface temperature

• (OLR) = (net absorbed solar flux)

• Equilibrium temperature increases with the amounts of H2O and H2

• The scattering effect further increases the equilibrium temperature


w/ scattering w/o scattering



Example of the atmosphere-interior evolution (NH2O=NH2=10NTO)



Magma ocean lifetime

• The scattering blanketing effect prolongs the magma ocean lifetime 
especially when the total amounts of H2O and H2 are high

w/ scattering w/o scattering



impactor

proto-Earth

Implication for the Moon’s origin
Classical giant impact model

• Most of the building materials of the Moon 
are from the impactor (e.g., Canup, 2004)

• Similarity in the isotopic composition between 

the Earth and the Moon (e.g., Zhang et al., 2012)

• Enrichment of FeO in the basalts and the bulk  

Moon than in the Earth’s mantle (Khan et al., 2006)

Ohtake et al. (2016)

Wiehert et al. (2001)



impactor

proto-Earth

impactor magma ocean
enriched in FeO  
through crystallization

proto-Earth

Implication for the Moon’s origin
Classical giant impact model Giant impact model with MO

• Most of the building materials of the Moon 
are from the Earth’s MO (Karato, 2014; Hosono et al., 2019)

✓consistent with the similarity in the isotopic 

composition between the Earth and the Moon

✓Enrichment of FeO in the basalts and the bulk  

Moon than in the Earth’s mantle through the  
crystallization differentiation

• Most of the building materials of the Moon 
are from the impactor (e.g., Canup, 2004)

• Similarity in the isotopic composition between 

the Earth and the Moon (e.g., Zhang et al., 2012)

• Enrichment of FeO in the basalts and the bulk  

Moon than in the Earth’s mantle (Khan et al., 2006)



• 


•  : magma ocean lifetime

•  : time interval between GI (= 10 Myr)

Pimp = 1 − exp (− τMO
τimp )

τMO
τimp

Implication for the Moon’s origin
Probability of GI occuring during MO phase 

• The prolonged magma ocean lifetime 
increases the probability of GI occurring  
during the magma ocean phase 

• supporting the magma ocean origin 

consistent with the chemical characteristics 



Loss processes of atmospheric H2

• Escape process induced by heating of  
the upper atmosphere through XUV absorption

• The escape is not fast (~1 bar/Myr) 

due to molecular radiative cooling  
(Yoshida & Kuramoto, 2020; 2021; Yoshida et al., 2022; 2024)

• Chemical reaction with the oxidized magma  
resulting from FeO disproportionation 
(e.g., Armstrong et al., 2019; Deng et al., 2020; Kuwahara et al., 2023)

• H2 + Fe2O3 → H2O + 2FeO

• The reaction rate should be limited by the H2 

diffusion into the magma ocean

H2H2 H2

H2 H2

Hydrodynamic escape

Oxidation by magma

Fe3+ Fe3+Fe3+

3Fe2+ → 2Fe3+ + Fe



Summary
• We have developed a coupled atmosphere-interior thermal evolution model  

that considers the balance of planetary and solar radiation


• Rayleigh scattering can significantly suppress the outgoing longwave radiation (OLR), 
particularly when the surface temperature and atmospheric mass are high


• The MO lifetime can be extended by the blanketing effect of proto-atmospheres 

• suggesting that the magma ocean state persisted throughout most of the giant impact 

phase and support the hypothesis that the Moon originated from Earth's magma ocean


