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Potential vorticity as a material tracer

Potential Vorticity (PV) is often close to being a conservative dynamical
tracer in many geophysical flows:

Dq

Dt
≈ 0
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Figure 5. Sectors of the 300 K IPV maps for the period 2C-25 September 1982. The region covered is from 
40"N to the north pole and from 120"W to 0"W with the 60"W meridian central. The contour interval is 0.5 PV 
units and the region 1.5-2 units is blacked in. Also shown are the horizontal velocity vectors on this surface, 

scaled as in Fig. 2. 

the present data in association with the feature D" in Fig. 2(a). We shall see in section 3 

that such a structure, which all the above-mentioned cases share qualitatively, is precisely 

that expected theoretically for the flow structure associated with an upper air high-PV 
anomaly like that originally postulated by Kleinschmidt . Moreover such gross differences 

as there are between tropical and high latitude cases are qualitatively consistent with 
those predicted theoretically from the different values of the Coriolis parameter (Eqs. 

(33)  below). 
Finer details such as the shallow tongues seen in Fig. 9(b), whose presence or absence 

may be difficult to determine observationally, are probably explicable, when they occur, 
in terms of the detailed spatial structure of the PV anomaly and its formation by competing 
processes such as different amounts of advection along different isentropic surfaces, and 
non-conservative effects such as clear air turbulence (e.g. Staley 1960; Shapiro 1978, 
1980; Holopainen and Rontu 1981), which may tend to modify such tongues locally (see 
section 7). 

( d )  A minor blocking episode 

The other development to be singled out for discussion is that of a blocking 
anticyclone, again in the North Atlantic. A portion of each 330 K IPV map for the period 
30 September-7 October is shown in Fig. 11. Note that this period follows on from that 

Contours of PV are virtually
material contours, meaning
they carry the same fluid particles
at all times (if q is conserved).

PV is not passive, but directly
feeds back into the flow and largely
controls the flow’s dynamical and
thermodynamical structure through
‘PV inversion’.
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SUMMARY 

The two main principles underlying the use of isentropic maps of potential vorticity to represent dynamical 
processes in the atmosphere are reviewed, including the extension of those principles to take the lower boundary 
condition into account. The first is the familiar Lagrangian conservation principle, for potential vorticity (PV) 
and potential temperature, which holds approximately when advective processes dominate frictional and 
diabatic ones. The second is the principle of ‘invertibility’ of the PV distribution, which holds whether or not 
diabatic and frictional processes are important. The invertibility principle states that if the total mass under 
each isentropic surface is specified, then a knowledge of the global distribution of PV on each isentropic surface 
and of potential temperature at the lower boundary (which within certain limitations can be considered to be 
part of the PV distribution) is sufficient to deduce, diagnostically, all the other dynamical fields, such as winds, 
temperatures, geopotential heights, static stabilities, and vertical velocities, under a suitable balance condition. 
The statement that vertical velocities can be deduced is related to the well-known omega equation principle, 
and depends on having sufficient information about diabatic and frictional processes. Quasi-geostrophic, semi- 
geostrophic, and ‘nonlinear normal mode initialization’ realizations of the balance condition are discussed. An 
important constraint on the mass-weighted integral of PV over a material volume and on its possible diabatic 
and frictional change is noted. 

Some basic examples are given, both from operational weather analyses and from idealized theoretical 
models, to illustrate the insights that can be gained from this approach and to indicate its relation to classical 
synoptic and air-mass concepts. Included are discussions of (a) the structure, origin and persistence of cutoff 
cyclones and blocking anticyclones, (b) the physical mechanisms of Rossby wave propagation, baroclinic 
instability, and barotropic instability, and (c) the spatially and temporally nonuniform way in which such waves 
and instabilities may become strongly nonlinear, as in an occluding cyclone or in the formation of an upper air 
shear line. Connections with principles derived from synoptic experience are indicated, such as the ‘PVA rule’ 
concerning positive vorticity advection on upper air charts, and the role of disturbances of upper air origin, in 
combination with low-level warm advection, in triggering latent heat release to produce explosive cyclonic 
development. In all cases it is found that time sequences of isentropic potential vorticity and surface potential 
temperature charts-which succinctly summarize the combined effects of vorticity advection, thermal advection, 
and vertical motion without requiring explicit knowledge of the vertical motion field-lead to a very clear and 
complete picture of the dynamics. This picture is remarkably simple in many cases of real meteorological 
interest. It involves, in principle, no sacrifices in quantitative accuracy beyond what is inherent in the concept 
of balance, as used for instance in the initialization of numerical weather forecasts. 
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Linear and nonlinear stability of monotonic PV

Rossby waves are manifestations of this PV inversion principle. Such waves
owe their existence to gradients of PV.

The following sketch reminds us of the basic Rossby-wave mechanism:

(From M.E. McIntyre’s GEFD lecture notes).

• Any PV contour supports Rossby waves, even when it is a jump in PV.

• Moreover, monotonic distributions of PV (e.g. in latitude) are linearly
stable, and even nonlinearly stable at least in the absence of gravity waves
(Dritschel, J. Fluid Mech. 191, 1988).
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Rossby waves ... or Kelvin waves ... or Rayleigh waves

Consider the simplest situation of a vorticity interface at y = η(x , t)
separating two infinite, planar regions of uniform vorticity:

The flow is governed by the 2D Euler equations, which in vorticity form are

Dω

Dt
= 0 ; ∇2ψ = ω ; u = −∂ψ

∂y
; v =

∂ψ

∂x
.

The undisturbed basic-state is independent of x (and t), so since
ω = ∂v/∂x − ∂u/∂y , the flow is purely zonal:

u = ū(y) = −ω±y for ± y > 0 .
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Linear analysis

We displace the interface from y = 0 to y = η(x , t), where ∂η/∂x ≪ 1.

The vorticity remains uniform in the two regions. Hence, the perturbation
streamfunction ψ′ satisfies ∇2ψ = 0 in each region.
Taking η(x , t) = η̂ e i(kx−σt), then

ψ′ = ψ̂ e−k|y |e i(kx−σt)

to leading order. This must be continuous at y = 0 since

v =
∂ψ

∂x
⇒ v ′ = ikψ′

and v (= v ′) must be continuous.

The interface is material: it moves with the fluid ⇒
Dη

Dt
= v(x , η, t) ⇒ −iση̂ = ikψ̂ .
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Linear analysis

The total horizontal velocity u = ū + u′ must be continuous at y = η ⇒

−ω−η + u′(x , 0−, t) = −ω+η + u′(x , 0+, t)

but

u′ = −∂ψ
′

∂y
⇒ u′(x , 0±, t) = ±kψ̂ e i(kx−σt) .

Hence, with ∆ω ≡ ω+ − ω−, we find

∆ω η̂ = 2kψ̂ .

Previously, we found −ση̂ = kψ̂, so eliminating kψ̂ we obtain

σ = −1
2∆ω .

• Waves move left (westward) at constant speed c = ω/k = −∆ω/(2k).
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“Traditional” Rossby waves

Consider the 2D (single-layer) quasi-geostrophic model governed by

Dq

Dt
= 0 ; ∇2ψ − k2Dψ = q − βy ; u = −∂ψ

∂y
; v =

∂ψ

∂x
,

where kD = L−1
D = f0/

√
gH is the Rossby deformation wavenumber and

β is the planetary vorticity gradient.

For a basic state at rest, q = q̄(y) = βy and ψ = ψ̄ = 0. Let q = q̄ + q′

where q′ is sufficiently small to allow one to linearise the governing
equations:

∂q′

∂t
+ βv ′ = 0 ; ∇2ψ′ − k2Dψ

′ = q′ ; u′ = −∂ψ
′

∂y
; v ′ =

∂ψ′

∂x
.

These are constant-coefficient equations. Hence, we may seek plane-wave
solutions, {

q′, ψ′, u′, v ′
}
=

{
q̂, ψ̂, û, v̂

}
e i(kx+ly−σt) .
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“Traditional” Rossby waves

This results in a set of algebraic equations,

−iσq̂ + βv̂ = 0 ; −(k2 + l2 + k2D)ψ̂ = q̂ ; û = −ilψ̂ ; v̂ = ikψ̂ .

Non-trivial solutions (with q̂ ̸= 0) require σ to take the values

σ =
−βk

k2 + l2 + k2D

for all wavenumbers k and l .

These waves also have a westward phase velocity, in this case
c = ω/k = −β/(k2 + l2 + k2D).

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄
Notably, both Rayleigh and Rossby waves are characterised by c → 0 as
k →∞: short waves become non-dispersive.
This is important for the nonlinear problem.
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Time ↓

Waves break, even though linearly stable!

David Dritschel Fronts, jets and PV staircases November 2024 12 / 58



Nonlinear stability allows Rossby wave breaking!

Non-monotonic PV profiles get re-arranged via inhomogeneous PV mixing.
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The Rhines scale

So, nonlinear stability does not prevent Rossby wave breaking and
subsequent mixing. It only limits it.

Wave steepening and breaking are generic, even for small perturbations to
a rest state with q = f0 + βy or q = 2Ω sinϕ (Scott & Dritschel, Zonal
Jets, CUP 2019).

What sets the latitude or y scale of the mixing? Rhines (1975) argued
that this is determined by a balance between the Rossby wave frequency
and a typical turbulent eddy frequency:

β

k
∼ kueddy ⇒ 1/k =

(
ueddy
β

)1/2

≡ LRh ,

known as the ‘Rhines scale’. However, this assumes that the Rossby
deformation length LD ≫ LRh, and does not account for forcing or
damping.
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Inhomogeneous mixing

Figure 1: Schematic from McIntyre (1982), suggesting the robustness of nonlinear
jet-sharpening by inhomogeneous PV mixing. Here most of the mixing is on the
equatorward flank of an idealized stratospheric polar-night jet, in a broad midlatitude
“surf zone” due to the breaking of Rossby waves arriving from below. The profiles
can be thought of as giving a somewhat blurred, zonally-averaged picture. The

McIntyre (1982) argued that this
mixing must be inhomogeneous:
if the total PV variation is preserved,
the mixing must reduce gradients
in some places,
and increase them in others.

Where the PV gradients are steepened, eastward jets form by the PV
inversion principle.

In between, in the mixed regions, there must be a westward return flow,
by continuity.
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FIG. 5. Simulation of a quasigeostrophic shallow-water turbulent flow in a channel (see section 4). Time evolves to the right and

downward, as labeled in units of 4�/ | q� | max. That is, the eddy turnaround time is unity for the initial maximum PV anomaly.

Contour advection
simulation of flow
in a β channel
for LD →∞

Shown is the PV field
q(x , t) at a few times t.

From D & McIntyre,
JAS 2008
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Equivalent latitude Zonal mean zonal velocity

→

� �

FIG. 6. Diagnostics for the experiment of Fig. 5. The left-hand panel shows the time evolution of the zonal-mean

position y(q, t) of each PV contour that wraps the domain (i.e., that closes on itself only through the periodic

boundaries x � ��). The latitudinal coordinate y is in units of LD, and time t is in units of 4�/ | q� | max. PV mixing

�
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For a single-layer quasi-geostrophic flow (illustrated above for LD = 1),
PV inversion determines the zonal velocity u from

∇2ψ − ψ/L2D = q − βy , u = −∂ψ/∂y .
For q = q(y) in the form of one or several mixed zones — a PV staircase,
u(y) exhibits multiple eastward jets:

Figure 7: Idealized mass and velocity profiles for perfect staircase steps, as deter-
mined by PV inversion. Tick marks are at intervals of y = b = LD. From left to
right, the first two profiles are for a single step or mixing zone, respectively the mass
shift or surface-elevation change given by (5.2)ff. and the velocity profile given by
(5.1)ff. The remaining profiles are the velocity profiles for two, three and an infinite
number of perfect steps, the last from Eq. (5.3) shifted by b. Note that the angular
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For a single mixed zone, q = 0 for |y | < b, one can show

ψ = βL3D [kDy − µ sinh(kDy)] and u = βL2D [−1 + µ cosh(kDy)]

with adjoining exponential tails ∝ e−kD|y | for |y | ≥ b.

Here, µ ≡ (1 + bkD)e
−bkD and kD = 1/LD as before.

This is illustrated below for β = 1 and b = 1.
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Notably, the strongest shear exists just inside the mixed zone.
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Jet spacing and PV staircases

Here, the flow is strictly zonal — not turbulent — yet the Rhines scale

LRh =
√

urms/β

is proportional to the jet spacing, Lj , computed only by PV inversion:

Lj = 451/4LRh ≈ 2.59LRh

for LD →∞.

This closely agrees with what is found in full spherical geometry
(Dunkerton & Scott, JAS 2008).

But how complete can PV mixing be? Incomplete mixing increases Lj/LRh.

• The Rhines scale alone does not predict jet spacing, even for LD →∞.

David Dritschel Fronts, jets and PV staircases November 2024 20 / 58



Jet sharpening by turbulent mixing

Dritschel & Scott, Phil. Trans. R. Soc. A 369 (2011) investigated the
effect of turbulent mixing on an initially broad jet,

q(x , y , 0) = βy + q′0(y) with q′0(y) = πβ erf(y/w) .

We add noise with an energy spectrum ∝ k3e−2π(k/k0)2 and amplitude
q′rms = 2πβqe . We take w = 1, β = 2 and a domain width & height of 2π.

(a) (b)

Figure 2. Initial PV field (basic state plus perturbation) for perturbation amplitudes (a) qe =
0.5 and (b) qe = 4. (Online version in colour. The colour range from red through green/cyan to
blue/purple represent values in the range [−2 , 2 ]; outside this range, the colours are cycled

fi
�

fi
fi

fi

fl

fl fi

fi

fi
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Jet sharpening by turbulent mixing

(a)

(b)

Figure 3. PV at times (i) t = 5, (ii) t = 20, (iii) t = 200 for the cases (a) L−1
D = 0 and qe = 1 and (b)

L−1
D = 0 and qe = 4; colours as in figure 2. (Online version in colour.)

fi −
fi

fi

fi

fl
fi
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Jet sharpening by turbulent mixing

The effect of finite deformation length. Here LD = 1/4.

(a) (b) (c)

Figure 4. PV at times (a) t = 10, (b) t = 40, (c) t = 400 for the case L−1
D = 4 and qe = 4; colours as

in figure 2. (Online version in colour.)

fi fi

fi
−

fl

fi − �

−

−

− fi
− fl fl

fl

The jet appears broader and wavier than in the case for LD →∞ (for the
same perturbation amplitude qe). Vortices are larger and more prevalent.
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Jet sharpening by turbulent mixing

The effect of finite deformation length. Here LD = 1/8 — even smaller.

−

−
− − −

− fi
fi −

≤
fi

(a) (b) (c)

Figure 6. PV at times (a) t = 25, (b) t = 100, (c) t = 1000 for the case L−1
D = 8 and qe = 4; colours

as in figure 2. (Online version in colour.)

fi
fi

− fi −
fl

fi

The jet appears even broader and wavier, and vortices proliferate.
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Jet sharpening by turbulent mixing: summary

.
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Figure 11. Jet-weighted averages of PV gradient for all calculations qe = 0.5, 1, 2, 4 and L
−1
D =

0, 2, 4, 6, 8: (a) based on equivalent latitude �dq/dye� and (b) based on the zonal mean �dq̄/dy�.
Values are normalized by the value of the corresponding basic state.
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Forcing

In forced flows, there exists an additional length scale,

Lε = (ε/β3)1/5 ,

where ε is the rate of kinetic energy injection (Maltrud & Vallis, 1991).
There may also be a separate forcing scale Lf .

  

 

kRh kε kf

E(k)

Figure 1.1 Schematic energy spectrum indicating the length

scales LRh = k
−1

Rh
, Lε = k

−1
ε , and Lf = k

−1

f
.

What emerges depends on four length scales
LD, LRh, Lε, Lf — if we assume that
the domain scale is much larger and
the dissipation scale is much smaller.

Scott & D JFM (2012) considered the simplest
case for which LD →∞. A linear damping,
at rate r , is applied to the PV, i.e.

Dq

Dt
= F − rζ with ζ = ∇2ψ ,

forcing F , and damping r ∝ ε so that the energy equilibrates at E = ε/2r .
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Equilibrated flows (at t = 10/r) computed by Contour Advection (CLAM)

Here the PV anomaly q − βy is shown

(a) LRh/Lε = 3.0 (b) LRh/Lε = 10.8

PV staircases emerge only for large LRh/Lε. Note: Rossby waves persist.
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0

(a) (b)

FIGURE 5. ū(y) (solid line), q̄(y) (dotted line) and q(ye) (solid line) at t = 10/r for the cases
(a) r = 256 × 10−4 (LRh/Lε = 3.0) and (b) r = 1 × 10−4 (LRh/Lε = 10.8, corresponding to

figure 3(a,d). Velocities are scaled by U =
√

ε0/r.

Corresponding mean profiles of q and u, from Scott & D, JFM 2012.
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How close can one get to a perfect staircase? very!

0y

0–1 1

FIGURE 12. The profile q(ye) from the case of physical-space forcing and r = 0.0001
(LRh/Lε = 10.8, see figure 5b) together with a notional staircase constructed as described
in the text.
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Weak, large-scale topographic forcing also creates PV staircases,
here without damping.

−π  π
q

−π

 

π

y
e

(a) (b)

Figure 1.5 (a) Time evolution of equivalent latitude potential

vorticity anomaly, q(ye, t)−βye for topographic forcing amplitude

a0 = 0.004. (b) Profile of q(ye) at t = 32000, t = 64000 and
t = 160000 (LRh/Lf = 1.0, LRh/Lε = 11.0 at the final time).

configuration at any instant it so may not be determined

a priori. Here, the value of ε used in Lε is at any time

approximated by the average energy input rate measured

up to that time. A constant energy input rate would result

From Scott & D, Zonal Jets 2019
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(a) t = 4000 (b) t = 8000

Figure 1.6 q(x, y) at t = 4000 (a) and t = 8000 (b) for topo-
graphic forcing amplitude a0 = 0.016; values of LRh/Lε are 5.3,
6.0, respectively.

This is illustrated next in a few characteristic numeri-

cal simulations from an extensive set spanning a wide pa-

rameter space in L , L , Lε, and L . Here, we focus

Zonal averages clearly smear out the staircase structure
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Small Rossby deformation length

When the Rossby deformation length LD is finite and smaller than LRh,
things get more interesting....

(a) LRh/LD = 1/4 (b) LRh/LD = 1 (c) LRh/LD = 4

PV anomaly q−βy at t = 10/r , for small-scale forcing and weak damping.

As LRh/LD increases, jets get more wavy ... then disappear?
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The jets have not disappeared ... they are just different.

Now vortices and closed ring jets are prevalent

y equiv. lat. →

← zonal average

q
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Figure 3. Snapshots of the potential vorticity (top row) and speed (bottom row) from the
simulation with n = −1, at values of LRh/Lε and LRh/LD as indicated in the figure.

Fig.3 shows three examples of potential voriticity (top row) and speed (bottom row),
taken from the single simulation with − of the jet structure during the approach to
the strong-stair regime of interest. As time increases, left to right, the energy and hence
both Rh ε and Rh increase at the same rate. Strong jets and a clear staircase
structure begin to emerge around Rh ε (middle panel) and become more clearly
defined as Rh ε increases further. Jet meander significantly in all cases.

In the strong-stair regime (right panel) the kinetic energy is concentrated increasingly
in the meandering jet cores. However a number of other flow feature are also evident,
including closed loops resulting from extreme meanders breaking off the main jet, and
coherent vortices, which occur both in isolation and within the loops. Often the loops
are formed through a complicated interaction between a strong isolated vortex and a
pronounced jet meander. The focus of the current paper is not on such interactions
but their presence is noted as a factor that will potentially break the estimates obtained
above. In the right panel, approximately 50%–70% of the total kinetic energy is contained
within the jet cores and we will return to discuss the amount of kinetic energy contained
within the different coherent structures further below.

5.3. Verification of the estimates
Fig.4 shows the values of Rh and Rh from the three simulations with forcing

index − − , along with the predictions (3.3). The restriction to the strong
forcing cases is necessary to ensure Rh (and hence ) is large enough. [[And
we have omitted the case in which the scale of features approaches the domain
scale.(?)]] Here the jet separation has been obtained from an integer count of the number
of jets, divided by the length of the domain. The simulations have been sampled at regular
time intervals of [[...]], and a weak running average has been applied to compensate for
periods where the jet number fluctuates through ambiguities in the counting algorithm.
On average point move up and to the right as time increases, but in the quasistationary
picture we regard each point as a distinct point in parameter space. Some banding of

Persistent, weak energy injection sharpens the staircase (from Scott,
Burgess & D, J. Fluid Mech. 930, A20, 2022).
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Oceanic jets — small LD phenomena?
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Topographically-forced shallow-water flows on a sphere

Relative vorticity ζ at three times; top: narrow band, bottom: broad band
t = 6640 t = 13280 t = 19920

t = 6640 t = 13280 t = 19920
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From Dritschel, Jalali & Scott, in preparation;
see also Scott & Polvani, J. Atmos. Sci (2008).
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Long frontal waves and dynamic scaling in
freely evolving equivalent barotropic flow

B. H. Burgess1,† and D. G. Dritschel1
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FIGURE 1. (a) Initial PV field and (b) spectrum C(k) as defined in (2.1).

kD = L−1
D = 40

β = 0
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Jets emerge as well ... they just surround patches of PV
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FIGURE 4. (a–c) PV fields and (d–f ) corresponding kinetic energy density fields. (a) PV
field at t = 27 000, (b) PV field at t = 125 000, (c) PV field at t = 343 000, (d) KE field
at t = 27 000, (e) KE field at t = 125 000, ( f ) KE field at t = 343 000.

The PV takes on a ‘wedding cake’ structure — a staircase!
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PV measure: area A occupied by PV above a given threshold
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With time, the PV becomes progressively well mixed between sharp fronts
— the jets.
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On the late-time behaviour of a bounded,
inviscid two-dimensional flow

David G. Dritschel1,†, Wanming Qi2,3,4 and J. B. Marston3,4

Staircases even form in the other extreme: LD →∞ and β = 0
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Initial conditions: a superposition of low degree spherical harmonics
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ω(λ, ϕ, t = 4000) Vortex cross sections
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FIGURE 8. (a–d) Constant-latitude cross-sections of the vorticity field taken through each
of the four large-scale vortices (from left to right in figure 6d) in the highest-resolution
CLAM simulation at t = 4000. The relative longitudinal grid point i is indicated on the

Each vortex exhibits a stepped profile, the result of inhomogeneous mixing
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On the energetics of a two-layer baroclinic flow

Thibault Jougla1,† and David G. Dritschel1

x

z

FIGURE 2. Illustration of the initial undisturbed state of a two-layer quasi-geostrophic
vertically sheared flow, with uniform westward flow in the lower layer and uniform
eastward flow in the upper layer.

Early work: Panetta, JAS 1993
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t = 3000 days
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FIGURE 3. (Colour online) (a–c) The upper layer flow, and (d–f ) the lower layer flow, all
at t = 3000. (a,d) Normalised latitude 2y/π versus zonally averaged zonal velocity ūi(y, t).
(b,e) PV field qi(x, y, t) over the entire domain. (c, f ) Equivalent latitude ye(q̃, t) versus
normalised PV q̃ = (q − qmin)/(qmax − qmin).
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t = 4000 days: turbulent phase (baroclinic instability)
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FIGURE 4. (Colour online) (a–c) The upper layer flow, and (d–f ) the lower layer flow,
all at t = 4000. (a,d) Normalised latitude versus zonally averaged zonal velocity (note
that plot scales for u are the same as in figure 3). (b,e) PV field over the entire domain.
(c, f ) Equivalent latitude ye(q̃, t) versus normalised PV.
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t = 9400 days: quiescent phase
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FIGURE 5. (Colour online) (a–c) The upper layer flow, and (d–f ) the lower layer flow,
all at t = 9400. (a,d) Normalised latitude versus zonally averaged zonal velocity (note
that plot scales for u are the same as in figure 3). (b,e) PV field over the entire domain.
(c, f ) Equivalent latitude ye(q̃, t) versus normalised PV.
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Recipé for jet formation in atmospheres and oceans

The essential ingredient required for jet formation is irreversible, nonlinear
Rossby wave breaking.

y- 5191 .-

I Tiananmen teams.
pT¥s Eeentu

.

Jet formation cannot occur in linear theory: it is not a linear process.

The mathematical proof is simple:

Under linear dynamics, the mean position of each potential vorticity (PV)
contour (the equivalent latitude) can never change in time.

Thus, the area between PV contours can never change and mean PV
gradients are preserved — a simple consequence of PV conservation.
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Shear induces wave breaking: waves break into the region of greatest
shear. Subsequently, PV filaments are rapidly stretched and mixed there.
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(From Mariotti, Legras & D, Phys. Fluids 6(12), 1994 — vortex stripping)
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N. Harnik et al.
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(From Harnik, D & Heifetz, QJRMS (140), 2014 — “On the equilibration
of asymmetric barotropic instability”)
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... a bit later
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Wave breaking now occurs on both sides of the jet, into regions of strong
shear.≤ ≤ ≤ ≤

fi
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�

The gap region of light grey PV has virtually disappeared on the right,
leading to extremely sharp PV gradients.
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The positive feedback mechanism

Wave breaking occurs preferentially in regions of reduced mean PV
gradients.
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This implies there is a positive feedback mechanism: mixing further
weakens mean gradients in places, while strengthening them in others,
forming jets (inhomogeneous PV mixing).

This process is only limited by available perturbations to the mean flow.
Without forcing, these diminish as eddies transfer their kinetic energy to
the mean flow and become insufficient to induce further wave breaking
and mixing.
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Shear: the universal mechanism?

Fundamentally, shear induces wave breaking.

Consider a single passive PV contour located initially at y = η(x , 0)
= F (x) in the shear flow u = Λy .

Since Dy/Dt = v = 0, then y = η(x , t) satisfies Burgers equation:

∂η

∂t
+ Λη

∂η

∂x
= 0.

The (implicit) solution is η(x , t) = F (x − Ληt), which becomes
multi-valued at t = 1/(ΛF ′

max): the wave breaks.

Now suppose that the PV contour is active, i.e. has a PV jump of ∆q
across it. Now the PV contour oscillates, protecting itself from shear,
at least if ∆q>∼ Λ.
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Shear: the universal mechanism?

Otherwise, when ∆q<∼ Λ, the contour breaks and mixes.

Its mean position moves toward lower shear, or toward another PV
contour, in both cases so that ∆q>∼ Λ.

§
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-tissue
--
I

PV contours closely approach to augment their effective ∆q and therefore
protect them from shear.

Weak jets established early on provide (part of) the source of this shear —
initially weak. They strengthen by attracting nearby PV contours, which
then weakens PV gradients between jets.
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A superposition of two offset staircases shows the shear reduction between
closer PV contours (dashed):
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Exact result for quasi-geostrophic flow when ∆q = 0.5 and LD = 1;
adapted from D & McIntyre JAS 2008
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Conclusions, part 1 of 2

Potential vorticity (PV) is a key dynamical tracer in atmospheric and
oceanic dynamics; it is often advection dominated — i.e. nearly conserved
following fluid particles.

PV inversion, alongside balance relations, enables one to deduce both
dynamical and thermodynamical fields from a single scalar tracer, often to
astonishing accuracy.

PV advection is fundamentally nonlinear; PV largely induces the flow that
advects it.

PV contours — indeed any PV variation — support Rossby waves.
However, nonlinearity generically induces wave breaking.
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Conclusions, part 2 of 2

Wave breaking on PV contours leads to inhomogeneous mixing, weakening
PV gradients in some places, but strengthening PV gradients in others,
giving rise to eastward jets.

Such mixing can lead to PV staircases in remarkably diverse flows:
• forced/unforced, • small/large LD, • small-scale/large-scale forcing
(of many varieties), • barotropic/baroclinic, etc.

PV mixing, or homogenisation, causes strong shear to develop at the edges
of the mixed zones. This shear is a consequence of PV inversion.

Shear efficiently mixes PV in zones, leaving sharp PV steps on their
boundaries. Such steps are co-located with jets by PV inversion.
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