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Numerical models: overview

Even using greatly simplified reduced models may still require powerful
computers to “solve” (approximately).

For example, in two-dimensional flow — a flow independent of height or
a quasi-geostrophic flow in the limit LD → ∞ — the equations are still
difficult to solve since they are fundamentally nonlinear.

This nonlinearity allows the excitation of many scales of motion, leading to
turbulence, which even in two dimensions is complicated!
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Discretisation

Ultimately, a computational model
must discretise space and time
in some way since resources
are finite.

Space is often discretised into
grid cells, labelled by position x .
In this approach, no detail is
retained below the grid scale.

This can lead to serious errors.
Moreover, it is avoidable.
• Other approaches exist.
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Alternative approaches: points

There are many approaches to this problem. The simplest exactly reduce,
where possible, the PDEs to ODEs by using points, e.g. vortices, charges,
masses, etc.

This is possible when the system possesses a material invariant, e.g.
vorticity in two-dimensional (2D) flow (or potential vorticity in a
quasi-geostrophic (QG) flow).

This can be concentrated into a finite
number of points, each with finite
circulation in the fluid dynamical context.

The system evolution then just depends on
the point positions (and domain geometry),
leading to a coupled set of (nonlinear) ODEs.
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Alternative approaches: particle-in-cell

For a small number of points and simple surfaces/domains, the dynamics
are analytically tractable. But normally one must solve the coupled
nonlinear ODE system. For large numbers of points n, the numerical cost
grows like n2 and near collisions make the problem stiff.

The alternative is “Particle-In-Cell”, whereby an underlying grid is used to
approximately compute the point interactions. This is a hybrid method.

J. of

Comput.

Physics

(1973)
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Alternative approaches: elliptical parcel-in-cell (EPIC)

Recently, a major
extension of PIC called
“Elliptical Parcel-In-Cell”
(EPIC) has shown great
promise in modelling
clouds in unprecedented
detail — see
Frey, Dritschel & Böing
J. Comput. Phys. X 17
(2023) and below.

Here > 1010 parcels used! x-z cross section of a 3D simulation
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Alternative approaches: contour dynamics

Another alternative approach, also exploiting material conservation, is
“Contour Dynamics”. The basic idea is to represent the conserved field,
say q, by a set of contours between which q is uniform.

In this way, one only needs to follow the
contours, not all the points between.

For quasi-geostrophic flow on R2, for example

dx j

dt
=

1

2π

∑
k

∆qk

∮
Ck

K0(∥x ′
k − x j∥/LD) dx ′

k

where x ′
k is a point on the kth contour Ck

while x j is a point on another contour Cj .
Here ∆qk is the inward jump in q across Ck

and LD is the Rossby deformation length.
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Alternative approaches: contour dynamics

“Contour Dynamics” was developed for the 2D Euler equations (the limit
LD → ∞ of the QG equations) by Zabusky, Hughes & Roberts (1979),
though originates in the “Water Bag” model of Berk & Roberts (1965)
used to study the Vlasov equations in Plasma Physics.

It is limited by the inevitable tendency for contours to filament, leading to
a rapid growth in contour length and complexity:
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Alternative approaches: contour surgery

“Contour Surgery” (Dritschel J. Comput. Phys. 77, 1988) was developed
to cope with this situation, limiting contour complexity by permitting
topological reconnections:
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This enabled one to carry out long time simulations and determine the
fate of vortex interactions.
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Initially, simply an unstable elliptical vortex patch with aspect ratio of 0.3.
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Yes! Simply an unstable elliptical vortex patch with aspect ratio of 0.3.
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Initially, simply an unstable annulus 0.75 ≤ r ≤ 1 in QG with LD = 1.
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Alternative approaches: contour advection

The computational cost of Contour Surgery ∝ n2, where n is the total
number of discrete nodes representing the contours. This is prohibitive for
complex flows like turbulence.

An alternative, hybrid approach is “Contour Advection” (Dritschel &
Ambaum, Quart. J. Roy. Meteorol. Soc. 1997). Like PIC, Contour
Advection makes use of an underlying grid to replace costly contour
integrations by efficient grid-based methods, e.g. Pseudo-Spectral.

The result is a highly-efficient and
accurate method, capable of studying
a much wider range of physical systems.
In particular, these may include models,
like SW, where some of the prognostic
variables are evolved entirely on the grid.

3D QG turbulence — PoF 1999
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A closer look...

Dritschel, de la Torre Juárez & Ambaum, Phys. Fluids 11(6), (1999).
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Alternative approaches: CLAM

The most advanced algorithm using Contour Advection
is called the “Combined Lagrangian Advection Method”
(CLAM) (Dritschel & Fontane, J. Comput. Phys. 2010).

CLAM goes further by evolving gridded representations of q alongside the
contours. This is done to improve conservation of integral invariants like
energy in extended, complex flow simulations characterised by frequent
surgery (and hence strong dissipation of q variance or “enstrophy”)

CLAM moreover permits general non-conservative effects, e.g. as induced
by a magnetic field in astrophysical flows (Dritschel et al, JFM 857, 2018).
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The lock-exchange problem (S. E. King & Dritschel)

2D stratified flow: b = −g(ρ− ρ0)/ρ0 is buoyancy, ω is (scalar) vorticity.

Db

Dt
= 0 ,

Dω

Dt
=
∂b

∂x
, ∇ · u = 0 .

At t = 0, (simply!) ω = 0 and b = 1
2 tanh((x − 4)/ℓ), for ℓ≪ Lx = 8.

0 1 2 3 4 5 6 7 80.0
0.2
0.4
0.6
0.8
1.0

Shown: buoyancy ... as simulated on a conventional computer workstation!
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Numerical models: focus

Next, several of the above approaches are discussed in more detail.

Point vortices on closed surfaces of revolution

Contour Dynamics & Contour Surgery

Contour Advection & CLAM

Hydra

EPIC

Contact me for access to any of the related software.
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Point vortices

We consider a 2D, incompressible, inviscid
fluid flow on a surface S embedded in R3.

In general, just two coordinates s = (s1, s2)
are required to specify any point on S .

The natural dynamical variable is the vorticity ω(s, t) normal to S ,
since ω is conserved following fluid particles.

Incompressibility implies there exists a streamfunction ψ in terms of which
the velocity field may be expressed as

u = n ×∇ψ

where n is the unit normal to S .
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Point vortices

Then, given the definition of vorticity, ω = n ·∇× u, we arrive at the
inversion problem ∆ψ = ω, where ∆ is the Laplace-Beltrami operator
(∇2 restricted to S).

On the plane R2, Kirchhoff (1876) considered what happens if we take
ω to be concentrated at a discrete set of points xk(t), k = 1, 2 ... n.
Each such point vortex has zero area A, infinite vorticity ω, but finite
circulation Γk (= ωA).

For each vortex, one can exactly solve ∆ψ = ω, using Green’s function
for ∇2 on R2:

ψ(x , t) =
Γk
2π

ln ∥x − xk(t)∥

and then linear superposition gives the streamfunction for any number
of vortices.
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Point vortices on R2

The flow field is singular at each vortex
x = xk(t), but the self-induced flow is
purely azimuthal meaning it does not
affect the vortex motion.

Each vortex, instead, moves according to
the velocity field induced by all others.

This results in a finite Hamiltonian system,

dxk
dt

= − 1

2π

∑
j ̸=k

Γj
yk − yj

∥xk − x j∥2
&

dyk
dt

= +
1

2π

∑
j ̸=k

Γj
xk − xj

∥xk − x j∥2

The Hamiltonian H is the vortex interaction energy,

H = − 1

4π

∑
k

∑
j ̸=k

ΓjΓk ln ∥x j − xk∥
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Point vortices on S2

Point vortex motion on the sphere S2 is
closely analogous to that on R2.

Both share the same Hamiltonian
if ∥x j − xk∥ is regarded as
the chord distance, i.e.
2(1− x j · xk) on the unit sphere.

The vortex evolution equations are also
closely similar (Dritschel, JFM 78, 1988):

dxk

dt
=

1

4π

∑
j ̸=k

Γj
x j × xk

1− xk · x j

⇒ For Sn, n > 2, see Dritschel, Phil. Tran. Roy. Soc. A 377 (2019).
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Variable curvature surfaces

The sphere is very special in having constant curvature. This is part of the
reason why the Hamiltonian structure is so similar to that in R2.

But, the sphere, and indeed any bounded surface S must satisfy the
Gauss condition ∫∫

S
∇2ψ dS =

∫∫
S
ω dS = 0

i.e. the average vorticity must vanish.

This is not automatically satisfied by a set of point vortices, unless the
sum of their circulations Γk is zero.
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The form of point vortices on closed surfaces

This is an undesirable restriction. To circumvent it, we associate with each
point vortex a uniform compensating background vorticity, i.e. we take

ω(s) =
n∑

k=1

Γk

(
δ(s − sk)−

1

A

)
where s are coordinates on S , and A is the area of S .

This form of the vorticity, in fact, explains the close similarity between the
sphere and R2.

Specifically, it explains why the Green function G is the same in Cartesian
coordinates. But how do we get G for arbitrary surfaces?
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Conformal transformations

This is done by an amazing (mathematical) trick!

If we can find a conformal, angle-preserving transformation from S to R2,
then we can use the simple Green function for R2, re-expressed after
transforming back to S .

A point in R2 may be represented as the complex number z = re iϕ. The
Green function for the plane, Gp(z , zo), satisfies Laplace’s equation
everywhere apart from the Dirac singularity at the point zo , and we have

Gp(z , zo) =
1

2π
log |z − zo |.

This Green function transforms conformally to any point on S — except
one point! That is, it is the Green function Gp(s, so) for the punctured
surface Sp.
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An example: surfaces of revolution

For a surface of revolution (about the vertical Z axis), we may express the
Cartesian coordinates of any point on the surface S by

X = ρ(θ) cosϕ Y = ρ(θ) sinϕ Z = ζ(θ)

where 0 ≤ ϕ ≤ 2π and 0 ≤ θ ≤ π parametrize the curve ρ(θ), ζ(θ).

We call ϕ the longitude and θ the co-latitude, by analogy with a spherical
surface (for which ρ = sin θ and ζ = cos θ).
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To find the conformal transformation from the surface S to the plane R2,
we first compute the differential distance ds between two points on S :

ds2 = |dX |2 = dρ2 + (ρdϕ)2 + dZ 2 = [(ρ′)2 + (ζ ′)2]dθ2 + ρ2dϕ2

where ρ′ ≡ dρ/dθ.

The goal is to express ds2 in planar polar coordinates (r ,ϕ) as

ds2 = λ2(dr2 + r2dϕ2)

where λ2 is a conformal factor.

Distances are not preserved but angles are under a conformal
transformation.
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Hence, equating the expressions for ds2 ⇒

λ2dr2 = [(ρ′)2 + (ζ ′)2]dθ2 & λ2r2 = ρ2

which implies

r ′

r
=

√
(ρ′)2 + (ζ ′)2

ρ
& λ =

ρ

r
.

Starting from r(0) = 0, in principle these equations can be solved for r(θ)
and λ(θ), given ρ(θ) and ζ(θ).
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Note that r → ∞ when θ → π.
That is, the point θ = π is mapped to infinity.

More correctly, the conformal transformation applies only to the punctured
surface Sp!

Hence, the Green function

Gp(s, so) =
1

2π
log |z − zo | ,

with s = {θ, ϕ} and z = r(θ)e iϕ, is valid only for Sp.
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Repairing the hole

The Green function Gp(s, so) does not satisfy the Gauss condition.

However, consider the function

G (s, so) = Gp(s, so)−
1

A

∫∫
Sp

Gp(s, so) dS − 1

A

∫∫
Sp

Gp(s, so) dSo

where A is the area of S . Note: two extra terms are included to maintain
the required symmetry of G . The second term on the r.h.s. is a function
only of so , while the third is a function only of s.

Applying the ∇2 operator, we find

∇2G (s, so) = ∇2Gp(s, so)−
1

A
= δ(s − so)−

1

A
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Resolution

So, integrating over Sp, we obtain∫∫
Sp

∇2G (s, so)dS = 0

as required. We’re in business! This is our Green function!

This permits us to express the streamfunction ψ(s) induced by the point
vortices at s = sk :

ψ(s) =
n∑

k=1

ΓkG (s, sk).

But, this is not valid at a vortex position s = s j where G is singular.
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Regularisation

The singular part, which does not induce any flow, is removed by
subtracting

1

2π
log d(s, s j)

from G (s, s j), where d(s, s j) is the geodesic distance between s and s j .

Hence, we arrive at the expression for the streamfunction at the jth vortex:

ψ(s j) =
n∑

j=1, j ̸=k

ΓkG (sk , s j) + ΓjR(s j)

where

R(s j) = lims→s j

(
G (s, s j)−

1

2π
log d(s, s j)

)
is known as the Robin function. ⋆ ⋆ ⋆ new ⋆ ⋆ ⋆
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Equations of Motion

Skipping many details, this streamfunction permits one to define the
Hamiltonian H, in terms of which one can derive the equations of motion
for each vortex, i.e. for sk(t) (Dritschel & Boatto, Proc. Roy. Soc. A 471,
20140890).

This is illustrated here for a surface of revolution, which is rotationally
symmetric about the z axis.

For example, the ‘bean-shaped’ surface has

X = ρ(θ) cosϕ , Y = ρ(θ) sinϕ , Z = ζ(θ)

with ρ(θ) = sin θ & ζ(θ) = a sin2 θ + b cos θ

The ellipsoid is recovered by setting a = 0.
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Point vortices on an ellipsoid of revolution

A single vortex on the plane R2 or on a sphere S2 is stationary, by
symmetry. This is no longer true on surfaces with variable curvature.

On a surface of revolution, a vortex rotates at a rate Ω about the axis of
symmetry, depending on its co-latitude θ. Below, Ω(θ) is plotted for an
ellipsoid, x2 + y2 + z2/b2 = 1, for a single vortex of circulation Γ = 2π.
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b < 1: oblate

Ω

0 π/2 π
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Point vortices on an ellipsoid of revolution: stability

Instability domains for n = 2 to 6 vortices arranged on a ring of constant
co-latitude θ, as a function of the aspect ratio of the ellipsoid b.
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For a given n, there is linear instability for co-latitudes between
θn(b) and π − θn(b), centred on the equator, wherever θn(b) < π/2.
[movies]
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Contour Dynamics

We first begin by deriving the equations for Contour Dynamics for QG flow
in R2.

We assume that the material invariant q, the “potential vorticity”, is
piecewise-uniform. Specifically, q jumps by ∆qk crossing contour Ck

inwards.

Let points on Ck be denoted x = xk .

If we assume q = 0 “at infinity”, then the Ck and ∆qk
uniquely specify the spatial distribution q(x , t) at any time t.

The first task is to find ψ from ∇2ψ − γ2ψ = q in R2,
where here γ = 1/LD is the inverse of the Rossby deformation length.
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Contour Dynamics

The solution makes use of the well-known Green function involving the
modified Bessel function K0:

ψ(x , t) = − 1

2π

∫∫
R2

q(x ′, t)K0(γ∥x ′ − x∥) dx ′ dy ′ .

But q(x ′, t) is piecewise-uniform: q = qk in regions Rk . Hence,

ψ(x , t) = − 1

2π

∑
k

qk

∫∫
Rk

K0(γ∥x ′ − x∥) dx ′ dy ′ .

One can reduce this to contour integrals, but we don’t need to!. Consider
instead the velocity field u = (−∂ψ/∂y , ∂ψ/∂x):

u(x , t) = − 1

2π

∑
k

qk

∫∫
Rk

(
− ∂

∂y
,
∂

∂x

)
K0(γ∥x ′ − x∥)dx ′ dy ′ .
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Contour Dynamics

This looks like we are going nowhere; however, K0 is symmetric in x and
x ′. Hence, we can exchange derivatives of x for x ′ if we also change sign:

u(x , t) =
1

2π

∑
k

qk

∫∫
Rk

(
− ∂

∂y ′
,
∂

∂x ′

)
K0(γ∥x ′ − x∥) dx ′ dy ′ .

This is perfectly set up for Stokes’ Theorem, yielding

u(x , t) =
1

2π

∑
k

∆qk

∮
Ck

K0(γ∥x ′
k − x∥) dx ′

k

where x ′
k is a point on Ck . Note that qk has now switched to ∆qk .

All we have used is that the Green function (∝ K0) is symmetric in x and
x ′. The above result thus generalises considerably (Dritschel, Comput.
Phys. Rep. 1989).
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Contour Dynamics

This expression for u is valid everywhere, including on the same or other
contours.

Hence, evaluating at x = x j , a point on Cj , we have

dx j

dt
= u(x j , t) =

1

2π

∑
k

∆qk

∮
Ck

K0(γ∥x ′
k − x j∥)dx ′

k

— using the definition of the point’s velocity u(x j , t) = dx j/dt.

The above equations are the equations of Contour Dynamics. Notice they
are entirely self-contained: this is a closed dynamical system in the points
on the contours. The points between the contours are not relevant!

Nonetheless, it is an infinite order (Hamiltonian) system, as there are an
uncountable number of points on the contours. (The Hamiltonian is the
total energy, kinetic + potential.)
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Contour Dynamics: numerics

In general, the contours deform in ways that cannot be calculated
analytically.

Numerically, contours are approximated by a set
of nodes connected by splines, here cubic,
following Dritschel, J. Comput. Phys. 77, (1988).

The node spacing is controlled by
the local curvature, and is
adjusted every few time steps.

The total number of nodes n
may vary in time, typically considerably.

The computational cost rises like n2.
This rapidly becomes prohibitive.
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Contour Surgery

A solution is to limit the growth in complexity by fixing a smallest scale,
the surgical scale, δ (Dritschel, J. Comput. Phys. 77, 1988).

The node density is controlled to limit the maximum curvature to ∼ δ−1.

Surgery is used to
topologically reconnect
contours of the same level
which are closer than δ

In this way, a contour can
split into two parts, or two
different contours can merge.

δ = 1
4µ

2L, where µ = 0.2 is the
node-spacing parameter and L is
the (specified) large-scale length.
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Initially circular patches, with radii R1 = 1 & R2 = 0.99, separated by
d = 3.2. Here γ = 0. See also Dritschel & Waugh, Phys. Fluids (1992).
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Contour Advection

For complex flows like 2D turbulence, or for flows in bounded domains or
on surfaces, contour surgery is impractical. The computational cost may
be excessive, and moreover a simple Green function may not exist.

The alternative is to replace the costly/impractical contour integrations by
efficient grid-based methods. This requires the use of an underlying grid as
in Particle-In-Cell.

This is the approach taken by “Contour Advection”.

(Dritschel & Ambaum, Quart. J. Roy. Meteorol. Soc. 1997.)

Contour Advection (CA) furthermore permits one to study a much wider
range of models, such as shallow-water, where only the potential vorticity
q is represented by contours. Other fields are treated conventionally, i.e.
by grid-based methods.
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Contour Advection

Note: Only materially-conserved fields q are represented by contours.

CA makes use of a fast-fill algorithm, which creates a gridded
representation of q for use in inversion, i.e. in finding u from q
(and possibly other fields, as in shallow-water; see Dritschel, Polvani &
Mohebalhojeh, Mon. Wea. Rev. 1999).
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Contour Advection

The fast-fill algorithm uses a grid 4 times finer in each direction than the
‘inversion grid’, where e.g. the velocity field u is computed.

1–2–1 averaging is used to c o a r s e n q back to the inversion grid.

While this procedure results in a loss of information at small scales, the
impact on u is remarkably small. This is because u is obtained effectively
from an integration over q: large scales contribute the most.

The velocity is computed conventionally, e.g. using Fast Fourier
Transforms and spectral methods (in periodic domains). This is standard.

The contour nodes x i are evolved simply by solving

dx i

dt
= u(x i , t)

just ODEs, where u is bi-linearly interpolated to x i from the grid.
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Contour Advection

Things can get a bit messy in flows with many contour levels, as here in
the materially-conserved density field in a Kelvin–Helmholtz billow:
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Contour Advection

Surgery and node-redistribution can result in crossing contour levels.
Such errors can be virtually-eliminated by periodically re-contouring.

The materially-conserved field q is first converted to a grid as fine as
the surgical scale δ, a grid 16 times finer than the inversion grid
— in each direction. This uses the same fast-fill algorithm.

Contours are then efficiently re-built and used until the next
re-contouring — after every 20 applications of surgery.

Note: re-contouring acts like surgery (however is much more expensive).
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CLAM

The most advanced numerical method based on contour advection is the
“Combined Lagrangian Advection Method” (CLAM).

This greatly extends CA by allowing non-conservative forcing, i.e.

Dq

Dt
= F

for general forcing F . An example is 2D magneto-hydrodynamics,

Dω

Dt
= B0

∂j

∂x
− J(A, j) ,

DA

Dt
= B0

∂ψ

∂x
− ηj

j = −∇2A , ω = ∇2ψ , u = ∇⊥ψ =

(
−∂ψ
∂y

,
∂ψ

∂x

)
where j is the current density (the curl of the magnetic field B) and B0 is
the mean x component of B. Here, η is the magnetic diffusivity.
J(f , g) = ∂f /∂x ∂g/∂y − ∂f /∂y ∂g/∂x is the Jacobian operator.
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CLAM: comparison with the pseudo-spectral method

From Dritschel & Tobias, J. Fluid Mech. 703 (2012)
(a)

(d)

(b)

(e)

(c)

( f )

FIGURE 8. Final states of vorticity ω in the PSM simulations (a–c) and in the CLAM
simulations (d–f ) for Pm = 1/64 and γ = 0.2 (a, d), 1.0 (b, e) and 10.0 (c, f ). Note that we
have zoomed in to show a quarter of the computational domain.

PSM

CLAM

Increasing B0 −→
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CLAM: comparison with the pseudo-spectral method

• Here, in CLAM, we used an ‘inversion’ grid resolution of 10242

(in doubly-periodic geometry).

• In the pseudo-spectral method (PSM), we used a resolution of 81922

in order to obtain comparably weak dissipation of vorticity, ω.
Such dissipation is essential for numerical stability.

Cost? The CLAM simulation required 1.6 hours on a single 3.2 GHz
processor. The PSM simulation required 63 hours on 128 processors!

This huge gain is due to two factors.

CLAM uses contours for ω, which while not conserved, is dominantly
advected. Only contour surgery dissipates ω at scales 16 times finer
than the inversion grid.

The advecting velocity field u is very well approximated on the
inversion grid. Subgrid scales contribute little.
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CLAM: overview of the method

CLAM is built on the PSM (it can be built on any grid-based method).
The PSM uses Fast Fourier Transforms (FFTs) to carry out all linear
operations, e.g. differentiation, inversion of ∇2, etc. These can be done
exactly by wavenumber multiplication in spectral space.

All nonlinear products are carried out in physical space, i.e. on the grid.
De-aliasing is typically required to avoid spurious results at high
wavenumbers — this uses the “2/3 rule” (retaining only 2/3 of the
wavenumbers in each direction).

Time evolution requires numerical diffusion for stability. Commonly
hyper-diffusion is used, e.g.

Dq

Dt
= F − ν(−∇2)mq

for m > 1. Molecular diffusion corresponds to m = 1, but is considered
much too diffusive in many applications. m = 3 is a common choice.
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CLAM: overview of the method

CLAM largely avoids this diffusion by using contours, but additionally uses
two gridded representations of q, to enable non-conservative forcing F .

The field q is decomposed as

q = (1−F)qc + Fqs + qd

where

Dqc
Dt

= 0 ,
Dqs
Dt

= 0 ,
Dqd
Dt

= F − ν(−∇2)mqd

and where qc is evolved by contour advection while qs & qd are two
gridded fields evolved by the PSM.

Above F is a low-pass filter. Thus q blends the small-scale part of qc with
the large-scale part of qs , and adds changes generated by the forcing F in
qd .
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CLAM: overview of the method

To ensure minimal diffusion, the fields qs and qd are re-initialised at the
beginning of every time step: the entire q field is used to initialise qs ,
while qd is assigned the residual:

qs = q , qd = (1−F)(q − qc) .

In this way, q = (1−F)qc + Fqs + qd is unchanged.

This procedure keeps qd as small as possible, thereby minimising the
impact of (numerical) hyper-diffusion on the evolution of q.

Moreover, qs can be evolved without diffusion in the PSM, since it is
re-initialised with all of q each time step to give the best possible starting
conditions.
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CLAM: overview of the method

To incorporate the forcing F into the contours qc , and keep qd relatively
small, occasionally the entire field q is re-contoured on an ultra-fine grid,
16 times smaller than the inversion grid in each direction. The contours qc
are converted to grid values directly, while the remainder of q is
interpolated.

This is done when the total “twist” τ , a measure of the net straining,
exceeds a prescribed value:

τ ≡
∫ t

t0

|ωmax|dt > 2.5 ,

where t0 is the last time re-contouring occurred (or the initial time).

In this way, the contours receive the forcing indirectly, while accurately
representing a much wider range of scales than either qs or qd .
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CLAM: application to spherical shallow-water flows

PV field q in a thermally-forced flow; time units in days.
t = 0 t = 20

t = 50 t = 100

The whole sphere is shown, in a longitude-latitude (λ-ϕ) perspective.
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CLAM: application to spherical shallow-water flows

The flow starts from a state of rest, with q = f = 2Ω sinϕ.
t = 200 t = 300

t = 400 t = 500

Persistent, wavy jets develop from PV mixing, particularly near the equator
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Hydra

A software package for Contour Advection. Allows one to simulate a
variety of idealised geophysical and astrophysical flows.
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EPIC: the Elliptical Parcel-In-Cell method

A generalisation of the Particle/Parcel-In-Cell (PIC) method uses
space-filling, deformable elliptical parcels:

See Frey, Dritschel & Böing, J. Comput. Phys. X 17 (2023).
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EPIC: parcel representation

Each ellipsoid, centred at x = x i , moves as a material volume:

dx i

dt
= u(x i , t) and

dBi

dt
= S(x i , t)Bi + BiST (x i , t)

where S = ∇u is the velocity gradient matrix, and Bi is a symmetric 3× 3

matrix representing the i th ellipsoid,

(x − x i )
TB−1

i (x − x i ) = 1 , ∀x on the ellipsoid

(Dritschel, Reinaud & McKiver, J. Fluid Mech. 555, 2004.)

The eigenvalues of Bi are the squared axes lengths (a2, b2 and c2), while
the eigenvectors of Bi give the orientation of the principal axes.
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EPIC: parcel attributes

• The parcels represent the flow entirely.

• Each parcel, i , can be thought of as a vessel/container/cell containing
any number of flow attributes qi (uniform across each parcel).

In applications to rotating convection, the attributes are buoyancy b and
vector vorticity, ω. A relevant flow model is governed by the
Oberbeck–Boussinesq equations:

Du
Dt

+ 2Ω× u = −∇p

ρ
+ bêz ,

Db

Dt
= 0 , ∇ · u = 0 .

Pressure p can be eliminated by taking the curl of the momentum
equations:

Dω

Dt
= (ω + 2Ω) ·∇u +∇b × ez .
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EPIC: interpolation and dynamics

• Parcel properties are interpolated tri-linearly (with volume weighting) to
an underlying grid, where u is found by inverting the relation ∇× u = ω,
and where both S = ∇u and the vorticity tendency F are computed.

• Conversely, u, S and F are interpolated from the grid to the parcels to
evolve the system forward:

dx i

dt
= u(x i , t) ,

dBi

dt
= S(x i , t)Bi + BiST (x i , t) ,

dωi

dt
= F (x i , t) .

• We ensure interpolated parcel volumes Vi closely match grid-cell
volumes ∆x∆y∆z by nudging parcel centres x i each time step.

The parcels remain space-filling without ever needing to re-grid.
This maintains incompressibility.
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EPIC: mixing I

• Mixing — essential in 3D turbulent flows — is achieved in two ways.

First, excessively elongated parcels are split into two identical parcels:

This conserves total volume, centroid and second-order spatial moments.

Splitting occurs when the major-minor axis ratio a/c > λmax = 4.
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EPIC: mixing II

Second, very small parcels (having Vi < ∆x∆y∆z/20) are merged into
their closest neighbour:

This conserves total volume, centroid and, approximately, second-order
spatial moments.
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EPIC: application to the Rayleigh-Taylor instability

Consider a flow in the box [−π/2, π/2]3, horizontally-periodic and bounded
vertically between free-slip boundaries — appropriate to inviscid flow.

Initially, we start with u = 0 and an unstable buoyancy distribution:

b = − sin z + ϵh(x , y) cos2 z

where ϵ = 0.1 and h(x , y) is shown below. Note, Ω = 1
2ez .
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EPIC: buoyancy evolution (at y = 0) — 1283 grid
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Pseudo-Spectral method (PS3D) with ∇6 hyperviscosity
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Buoyancy extrema: preservation of monotonicity?

✓ EPIC ensures bmax(t) ≤ bmax(0) and bmin(t) ≥ bmin(0) : monotonicity.
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✗ PS3D strongly violates monotonicity.

David Dritschel (University of St Andrews) Lagrangian-based approaches & methods November 2024 67 / 70



Horizontally-averaged buoyancy: turbulent mixing
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EPIC mixes more realistically, especially near boundaries, where PS3D
exhibits strong overshoots and undershoots.
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EPIC with a 3843 underlying grid resolution
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Summary

A wide range of numerical approaches exists for simulating fluid flow.

The appropriate (efficient and accurate) method depends strongly on
the system under study ... and the question being asked.

We have reviewed methods for the simplest of models, point vortices,
to relatively complex ones, such as the quasi-geostrophic model,
2D density-stratified flows, 2D magneto-hydrodynamics and
spherical shallow-water flows.

Many questions remain, and much still remains to be learned.
Having the right tool to do the job is important.

To make progress, we rely upon reduced models and we continually
need to create new ones.

Finally, we should never stop searching for
improvements. Modelling is a dynamic process.
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