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Balance and imbalance in geophysical fluid dynamics

Atmospheric and oceanic flows often exhibit relations between fields,
indicating that some terms in the governing equations are sub-dominant.

For example,

• hydrostatic balance implies the vertical acceleration is negligible;

• geostrophic balance implies the horizontal acceleration is negligible.

Such balances are used to construct
the quasi-geostrophic (balance)
model. We lose two time derivatives
and filter relatively high-frequency
inertia–gravity waves.
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Balance and imbalance in geophysical fluid dynamics

The justification is that inertia–gravity waves tend to be energetically weak
compared to the slow, ponderous balanced flow.

However, other potentially more accurate balance relations may be sought
— ones that make the residual imbalance weaker.

For example, for a shallow water flow in height-velocity variables (h, u, v),
these relations take the form

F (h, u, v) = 0 & G (h, u, v) = 0

where F and G may be nonlinear differential operators. The definition of
potential vorticity q provides a further relation to determine h, u, and v
entirely from q, the ‘master variable’ (chosen since Dq/Dt = 0).

Hierarchies of such relations exist, whose accuracy depends on Rossby and
Froude numbers (Mohebalhojeh & Dritschel, J. Atmos. Sci. 2001).
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Examples of balance relations

The QG model uses the simplest balance relations

δ = ∇ · u = 0 & γ = f∇⊥ · u − g∇2h = 0

where ∇⊥ · u = ζ, the relative vorticity. Thus, the flow is non-divergent
and geostrophic: γ here is the ageostrophic vorticity (times f ).

A substantially more accurate balance, used below, instead uses
∂δ/∂t = 0 and ∂γ/∂t = 0, leading to

γ + 2J(u, v)−∇ · (δu) = 0 & g∇2(∇ · (hu))− f∇ · ((ζ + f )u) = 0 .

These relations, together with the definition of PV q = H(h, u, v), e.g.

q =
ζ + f

h
,

enable one to recover h, u and v from q(x , t), at each instant of time t.
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Examples of balance relations

When used to diagnose balance, the balanced fields thus obtained are
subscripted “b”, i.e. hb, ub and vb.

The imbalanced fields are the differences from the original fields, i.e..
hi = h − hb, ui = u − ub and vi = v − vb.
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In practice, the original fields are those computed in a particular
shallow-water (SW) flow simulation.
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Potential vorticity and inversion

Potential vorticity (PV) conservation in an adiabatic, inviscid flow is a
consequence of Kelvin’s circulation theorem.

The special status of PV as a nearly conservative tracer is immensely
useful for understanding atmospheric and oceanic dynamics.

Combined with balance, PV allows one to diagnose both dynamical and
thermodynamical fields by ‘PV inversion’ (Hoskins, McIntyre & Robertson,
Quart. J. Roy. Meteorol. Soc. 1985).

It also allows one to diagnose the residual imbalance, the “inertia–gravity
waves”.

Here we study this imbalance first in a non-hydrostatic (and ageostrophic)
shallow-water model, then in the fully three-dimensional “parent” model.

David Dritschel Balance & imbalance in complex flows November 2024 7 / 72



The shallow-water model

The hydrostatic shallow-water originated in the 19th century
(Saint-Venant, 1871), and has been used extensively ever since.

h.

p = pa .

Ω.

It is a long-wave theory, where horizontal scales L are assumed large
compared to the depth h. Further, the hydrostatic approximation is made,
and the horizontal velocity u is assumed to be independent of height z .
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The non-hydrostatic shallow-water model

Green & Naghdi (1976) derived a more accurate model by relaxing the
hydrostatic approximation while retaining the height-independence of u
(historically Serre, 1953 derived the equations first, see Dritschel & Jalali,
JFM 2020).

This model allows one to more reliably model shorter scales (L < h), which
are fundamentally non-hydrostatic.

Here we explore how this affects the evolution of rotating shallow-water
turbulence, in particular the excitation of inertia–gravity waves.

The non-hydrostatic equations are derived by vertically-averaging the 3D
parent system (see D & J, 2020), assuming only u is independent of z .

We therefore refer to this model as the Vertically-Averaged (VA) model.
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Conservation

The VA model conserves potential vorticity (PV) on fluid particles

Dq

Dt
= 0 , q =

ζ + f

h
+

1

3
J(h, δ)

besides global invariants like energy, linear and angular momentum
(depending on boundary conditions).

Computationally, we use Contour Advection to accurately model PV
conservation (Dritschel & Fontane, J. Comput. Phys. 2010).

To also accurately model the wave motions, we re-cast the equations and
explicitly evolve q, δ = ∇ · u and γ = f ζ − g∇2h (ageostrophic vorticity),
see Mohebalhojeh & D (2000).

David Dritschel Balance & imbalance in complex flows November 2024 10 / 72



Inversion

The use of q, δ and γ entails solving a series of linear, elliptic problems.
This is necessary to preserve the underlying balance. Otherwise, spurious
inertia–gravity waves are generated by numerical inaccuracies.

First of all, we use a Helmholtz decomposition for the velocity field:

u = −∂ψ
∂y

+
∂χ

∂x
& v =

∂ψ

∂x
+
∂χ

∂y
.

Here, ψ is the streamfunction and χ is the divergence potential.

Then χ is determined directly from the definition of δ: ∇2χ = δ.
It is prudent to use the dimensionless height anomaly

h̃ =
h − H

H

where H is the constant mean depth (due to mass conservation).
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Inversion

It is also prudent to use the re-scaled PV anomaly

q̃ =
ζ + f

1 + h̃
− f

— it still follows that Dq̃/Dt = 0 (for constant f ).

From the definition of q̃, and the Helmholtz decomposition, we have

∇2ψ = ζ = (f + q̃)(1 + h̃)− f = q̃ + (f + q̃)h̃ .

However, we don’t yet know h̃. But the definition of γ ⇒

γ = f ζ − c2∇2h̃ = f [q̃ + (f + q̃)h̃]− c2∇2h̃ .

Re-arranging this, we obtain a linear, elliptic equation for h̃:

c2∇2h̃ − f (f + q̃)h̃ = f q̃ − γ .
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Inversion

In summary,

• We find h̃ for given q̃ and γ.

• We find the relative vorticity ζ = q̃ + (f + q̃)h̃ from q̃ and h̃.

• We find ψ by inverting ∇2ψ = ζ.

• We find χ by inverting ∇2χ = δ.

• We find u & v by differentiating ψ and χ.

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄
In this way, we obtain the original primitive variables h̃, u and v from the
re-cast variables q̃, δ and γ.

David Dritschel Balance & imbalance in complex flows November 2024 13 / 72



Numerical methods (Contour Avection)

• We evolve the same variables, q̃, δ & γ, in (hydrostatic) SW and VA.

• Doubly-periodic pseudo-spectral treatment of δ and γ with standard
‘2/3 rule’ to de-alias and weak ν∇6 hyper-diffusion.

• Semi-implicit time-stepping for δ and γ with built in hyper-diffusion.
The iterated trapezoidal rule (Crank-Nicolson) is used for all
prognostic variables.

• Basic grid resolution: 5122 ⇒ Effective resolution: 81922.

• Domain dimensions Lx = Ly = 2π. Coriolis frequency f = 4π. Rossby
deformation length LD = k−1

D = c/f specified, where c =
√
gH and

H is the mean depth.
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Initial conditions for k0 = kD = 6 and H = 0.4
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The PV is specified from the spectrum k5 exp(−2k2/k20 ). The Rossby
number Ro = H|q̃|max/f = 0.6. All other initial fields are found by the
balance relations pn = ∂δ/∂t = ∂γ/∂t = 0 ⇒

γ + 2J(u, v)−∇ · (δu) = 0 & g∇2(∇ · (hu))− f∇ · ((ζ + f )u) = 0

— which must be supplemented by the definition of PV.
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Flow evolution: PV anomaly, comparing H = 0 & H = 0.4
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Evolution of divergence δ, comparing H = 0 & H = 0.1
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Evolution of balanced divergence δb
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Evolution of imbalanced divergence δi = δ − δb
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balanced and imbalanced divergence at t = 500, varying H

δb
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Linear waves

In primitive variables h, u and v , the non-hydrostatic shallow-water (VA)
equations are

Du
Dt

+ f ez × u = −1

h
∇p and

∂h

∂t
+∇ · (hu) = 0

where p = gh2/2+pn is the vertically-integrated pressure, while the
non-hydrostatic part pn satisfies the linear, elliptic equation

∇ ·
(
∇pn
h

)
− 3pn

h3
= γ̃,

where
γ̃ ≡ f ζ − g∇2h + 2J(u, v)− 2δ2

is known entirely in terms of h, u and v , where above

δ =
∂u

∂x
+
∂v

∂y
and ζ =

∂v

∂x
− ∂u

∂y
.

David Dritschel Balance & imbalance in complex flows November 2024 21 / 72



Linear waves

Linearising the VA equations about a state of rest and a mean depth H,
one obtains

∂u ′

∂t
+ f ez × u ′ = −g∇h′ − 1

H
∇p′n and

∂h′

∂t
+ H∇ · u ′ = 0

where primes denote perturbation quantities, together with

∇2p′n −
3p′n
H2

= H(f ζ ′ − g∇2h′) .

Seeking plane-wave solutions ∝ exp(i(k · x − ωt), where k is the
wavevector and ω is the frequency, a bit of algebra (!) yields the
dispersion relation

ω2 =
f 2 + c2k2

1+H2k2/3

k = |k | is the wavenumber and c =
√
gH.
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Linear waves

The familiar hydrostatic shallow-water (SW) dispersion relation

ω2 = f 2 + c2k2

is recovered for H → 0 (but g →∞ to keep c finite).

For H > 0, notably all frequencies |ω| lie between f and
N =

√
3c/H =

√
3g/H, called the ‘buoyancy frequency’.

• The phase velocity cp = |ω|/k decreases monotonically with k .

• The group velocity cg = |∂ω/∂k | is given by

cg =
|c2 − H2f 2/3| k√

(f 2 + c2k2)(1 + H2k2/3)3
.
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Group velocity

Alternatively
cg
c

=
|1− α|κ√

(3α+ κ2)(1 + κ2/3)3

where α ≡ (f /N)2 and κ = kH. This reaches a maximum when

κ =
√√

α2 + 3α− α = kmaxH.

Moreover, the group velocity vanishes for all k when f = N (⇔ α = 1).
Then, linear waves are completely trapped.
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imbalanced pressure pi at t = 500, varying H and kD

kD = 6 (f /N = 1 ⇔ H = 0.288...)
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kD = 12 (f /N = 1 ⇔ H = 0.144...)
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Wave trapping occurs for f /N ∼ 1.
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R.m.s. imbalanced divergence δi versus time
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• Minimal imbalance occurs when f /N ∼ 1.
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R.m.s. imbalanced pressure pi versus time
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Spatial spectra of divergence δ at t = 500 for kD = 6
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• Even for H = 0.1, the imbalance is greatly reduced for k >
√
3/H,

where strong dispersion occurs.
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Spectra of imbalanced divergence δi at t = 500 for kD = 6
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• The greatest reduction in imbalance occurs when f /N = 1 (yellow)
and linear waves are trapped.
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Same again ... but for kD = 12
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• The greatest reduction in imbalance occurs when f /N = 1 (yellow)
and linear waves are trapped.
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Frequency spectra

Recall that the dispersion relation for inertia–gravity waves on a basic
state at rest is

ω2 =
f 2 + c2k2

1 + H2k2/3
=

f 2 + N2κ2/3

1 + κ2/3

where κ = kH (the dimensionless wavenumber) and N =
√
3g/H.

• ω → f as κ→ 0 (long waves)

• ω → N as κ→∞ (short waves)

In the simulations, the divergence δ was saved at 16 equally-spaced grid
points every time step. Then, each time series was Fourier analysed to
create a frequency spectrum. Finally, the 16 spectra were averaged into a
single spectrum, Pδ.
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Frequency spectra of divergence δ for kD = 6
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• Here, T−1 = ω/(2π) is the sidereal frequency.
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Frequency spectra of divergence δ for kD = 12
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• The vertical lines mark f (cyan) and N (various H, other colours)
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Discussion (1/3)

The inclusion of non-hydrostatic effects generally complicates the
equations of motion.

However, such effects reduce IGW emission ✓, and provide a natural
frequency bound (N) useful for limiting the time step ∆t ∼ N−1 ✓.

Counter-intuitively, relaxing hydrostatic balance leads to more balance!

π

2

0

2

π
HIn a rotating stratified flow, the key parameter is the

Coriolis–buoyancy frequency ratio f /N.
(Recall N =

√
3c/H =

√
3g/H in the SW model.)

• When f /N ≪ 1, non-hydrostatic effects are weak
— except at very small scales L ∼ H.
IGWs tend to be small-scale and widely dispersed.
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Discussion (2/3)

π π

H .

• When f /N ∼ 1, non-hydrostatic effects strongly
suppress IGWs and trap the waves near intense
circulation regions — predominantly anti-cyclones.

H .

• When f /N ≫ 1, waves are no longer trapped
but spread throughout the domain.
IGWs tend to be large-scale.
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Discussion (3/3)

Commonly, f /N ≪ 1 in the atmosphere ∼ 10−2 and oceans ∼ 10−1.

However, there are exceptions. These occur in regions of weak
stratification, e.g. the Western Mediterranean, polar oceans, estuaries, etc.
Other planetary atmospheres (and oceans)?

While idealised, a single-layer non-hydrostatic model is convenient for
re-assessing fundamental processes in geophysical fluid dynamics.

Moreover, it is readily extendible to include
bottom topography (with Ted Johnson,
Reza & Mahdi Jalali), as well as magnetic fields,
providing a new approach to modelling the
solar ‘tachocline’ and ‘hot Jupiter’ exoplanets
(Dritschel & Tobias, JFM 973, A17, 2023).
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3D non-hydrostatic rotating stratified flows

More realistic 3D flows are often modelled by the Oberbeck–Boussinesq
equations:

Du
Dt

+ 2Ω× u = −∇p

ρ0
+ bêz ,

Db

Dt
= 0 , ∇ · u = 0 ,

where u = (u, v ,w) is the velocity, p is the pressure, ρ0 is the (constant)
background density, and b = −g(ρ− ρ0)/ρ0 is the buoyancy.
• Here, we take the background rotation Ω = (0, 0, f /2) (upward).

As written, these equations hide PV conservation. But, since b is
materially conserved, it follows that the PV

q = ωa · ∇b = (ω + f ez) · ∇b

is also materially conserved.

This motivates using the PV as a prognostic variable, i.e. Dq/Dt = 0, but
then what equation(s) do we replace?
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Re-casting the equations of motion

Dritschel & Viúdez, JFM 488 (2003) proposed replacing the full set u & b
by Ah & q, where

A =
ω

f
+

∇b

f 2

where Ah denotes ‘the horizontal part’ of A.

The variable Ah represents the departure from ‘thermal-wind balance’
(i.e. hydrostatic–geostrophic balance), which is normally written

f
∂u

∂z
= −∂b

∂y
and f

∂v

∂z
=
∂b

∂x
.

However, the x and y components of ω = ∇× u are

ξ =
∂w

∂y
− ∂v

∂z
and η =

∂u

∂z
− ∂w

∂x
.

Hence, Ah = 0 corresponds to thermal-wind balance upon neglecting
∇hw , i.e. f ωh ≈ −∇hb.
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Re-casting the equations of motion

The prognostic equations for the re-cast system are, equivalently,

Dq

Dt
= 0 ,

DAh

Dt
+f ez×Ah =

1

f
(ω·∇)uh+(1−σ−2)∇hw−

1

f 2
(∇hu)·∇b′

where b′ is the buoyancy anomaly defined through

b = N2z + b′,

N is the buoyancy frequency (constant), and σ = f /N, which is typically
small in the atmosphere and oceans. (Note: c = N/f = σ−1 below.)

Unlike the original system, one now must recover the original variable u &
b′ by inversion, i.e. by solving a set of elliptic problems. Introducing a
vector potential φ = (φ,ψ, ϕ) in terms of which A = ∇2φ, it follows that

u = −f∇×φ and b′ = f 2∇ ·φ .
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Re-casting the equations of motion

The vector potential is itself recovered by solving the elliptic inversion
problems

∇2φh = Ah ,

first for φh, then

Lϕ = ϖ + (1− σ2)∂Θ
∂z
− σ2N (φ) ,

for ϕ. Above, ϕ is the vertical component of φ,

L = ∇2
h + σ2

∂2

∂z2

is the usual quasi-geostrophic (QG) inversion operator, ϖ = ω · ∇b′/fN2

is the dimensionless PV anomaly (note Dϖ/Dt = 0), Θ = ∇h ·φh and

N (φ) = ∇(∇ ·φ) ·
[
∇2φ−∇(∇ ·φ)

]
.

The equation for ϕ is a double Monge-Ampère equation with lots of
interesting properties!
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Re-casting the equations of motion

Why go to all this trouble?

Re-casting the equations has two major benefits:

Material conservation of PV is explicit; and

The underlying QG balance is explicit: as in QG, elliptic inversion
problems must be solved.

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄
Note, the equations are unapproximated, just transformed to make the
underlying balance explicit.

Such transformations are known to greatly improve the ability of numerical
simulations to capture both the balanced and imbalanced motions —
(Mohebalhojeh & Dritschel, 2000, 2001, 2004, 2007, 2011, 2016; Smith &
Dritschel, 2006; Viúdez & Dritschel 2002, 2003, 2004, 2006; Dritschel &
Viúdez 2007, etc.)
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Rotating stratified turbulence: a demanding test
(a) (b)

Figure 1. Distribution of QG PV anomaly q at times (a) t = 0 and (b) t = 40. The view is
orthographic, at an angle of 60◦ from the vertical, and from the (y, z)-plane. From this view
we can see the top and front faces of the domain and a white line indicates where these faces
intersect. Cyclonic vortices are lightly shaded while anticyclonic vortices are darkly shaded.
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QG � = 0.25 � = 0.5 � = 0.75

Figure 2. Comparison of the PV anomaly fields � for various PV-based Rossby numbers �
as labelled, at 5 QG time units. The top row is for c = 10 and the bottom row is for c =100.
The view and shading is as in figure 1, but only the inner eighth of the domain is shown.
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Dependence on Rossby number, ϵ

� � �

fi � �

fi

QG � = 0.25 � = 0.5 � = 0.75

Figure 3. Comparison of the QG and NH simulations with c = 10 at time t =20. The view
and shading is as in figure 2.

� fi

fi
fi ff

ff

fl fi

Note: The Rossby number ϵ is the maximum absolute value of the
dimensionless PV anomaly ϖ.
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Diagnosing balance and imbalance

One might anticipate that turbulent flows, with Rossby numbers close to
unity, likely contain a significant amount of imbalance, in the form of
inertia–gravity waves.

To examine this, we decompose the flow into a balanced component, φb,
and a residual imbalanced component, φi. Note, φi = φ−φb.

Alas, there is no exact definition of balance — unless the flow is steady
(it is then entirely balanced).

The simplest definition is thermal-wind balance, what we refer to as QG
balance. This states that the balanced flow is both geostrophic and
hydrostatic. Then, φb = ϕbez ⇒ the balanced flow is determined by a
scalar potential: Lϕb = ϖ. Moreover,

ub = −f ∂ϕb
∂y

, vb = f
∂ϕb
∂x

, wb = 0 , b′b = f 2
∂ϕb
∂z

.

This is just the QG model!
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Nonlinear QG balance

Much more accurate balance conditions exist. An approach valid to the
next order in Rossby number ϵ is ‘Nonlinear QG’ (NQG) balance, see
McKiver & Dritschel, JFM 596 (2008).

Here, we take

ϕb = ϵϕ1 + ϵ2ϕ2 +O(ϵ3) , φh,b = ϵ2φh2 +O(ϵ3)

and neglect the O(ϵ3) terms. The equation for ϕ1 is the same as in QG
balance: Lϕ1 = ϖ/ϵ. Recalling φ = (φ,ψ, ϕ), at O(ϵ2) one may show

Lϕ2 − (1− σ2)
(
∂2ϕ2
∂x2

+
∂2ψ2

∂x∂y

)
= 2σ2

(
∂2ϕ1
∂z∂x

∂2ϕ1
∂y2

− ∂2ϕ1
∂x∂y

∂2ϕ1
∂y∂z

)
Lψ2 − (1− σ2)

(
∂2ϕ2
∂x∂y

+
∂2ψ2

∂y2

)
= 2σ2

(
∂2ϕ1
∂x2

∂2ϕ1
∂y∂z

− ∂2ϕ1
∂x∂z

∂2ϕ1
∂x∂y

)
Lϕ2 − (1− σ2)

(
∂2ϕ2
∂x∂z

+
∂2ψ2

∂y∂z

)
= 0
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Nonlinear QG balance

The equations for the second-order fields φ2 are linear, hence easy to solve
in practice.

The procedure is simple:

Solve Lϕ1 = ϖ/ϵ for ϕ1. Recall, ϖ = O(ϵ). Indeed, we define
ϵ = |ϖ|max — the PV-based Rossby number.

Compute the derivatives of ϕ1 needed to form the rhs of the linear
system above, then invert to find φ2.

That defines the balanced flow, φb. The imbalance is the residual,
φi = φ−φb.

Below, the first-order, QG balanced flow is referred to as φQG, while the
second-order, ageostrophic balanced flow is defined by φAGb = φb −φQG.
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Optimal PV balance

Perhaps the most advanced balancing procedure is ‘Optimal PV balance’
(OPV balance) (Viúdez & Dritschel, JFM 521, 2004).

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄
Essentially, OPV balance seeks the Lagrangian configuration of fluid
particles, τ units of time in the past, which evolve into the current
configuration at t = t0, from a state of rest, and with PV

ϖ(t) = R(t)ϖ(t0) for t0 − τ ≤ t ≤ t0

growing from 0 on each fluid particle:

R(t0 − τ) = 0 while R(t0) = 1 .

A commonly-used ramp function is

R(t) =
1

2
[1− cos(π(t − t0 + τ)/τ)] .
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Optimal PV balance of geophysical flows 351

(a) (b)

Figure 4. (a) The original PV contours, Π (x, t), at t = 10, and (b) the PV contours at the
beginning of the 4-day ramp, r f6

(X, t, 0), which evolve into those in (a) from ϕ
f6
(x, t, 0) = 0

while ramping up the PV anomaly. The contours are separated by uniform shades of grey,
with an intensity proportional to the PV (white is used for the maximum PV). The actual
contours are too dense to plot directly. The view is orthographic from 0◦ longitude and 45◦

latitude.

δ
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δ δ
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From Viúdez & Dritschel, JFM 521, (2004).
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Vertical velocity in a y = 0 cross section at t = 20fi

w/�2 wb/�2 wi/�2

Figure 6. Comparison of the full (left column), balanced (middle column) and unbalanced
(right column) components of the vertical velocity field at 20 QG time units in a y = 0
cross-section for the cases c = 10 (top row) and c = 100 (bottom row), all with � =0.5. The
contour intervals for the full, balanced and unbalanced fields are ∆, ∆ and ∆/4 where
∆= 0.008/c.

fi fl

fi
fi �

fi

fi fi

fi

ff fi
fi −
fi

fi �

fi

fi fi fi

David Dritschel Balance & imbalance in complex flows November 2024 50 / 72



Percentage of imbalanced vertical velocity versus time

100
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||w||rms

t (QG units)

Figure 7. Time evolution of the r.m.s. imbalance in w as a percentage of the total for c = 10
(solid line) and c = 100 (dashed line) when � = 0.5.
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Even in vertical velocity, the percentage of imbalance remains only a small
percentage of the total. The vertical velocity is mostly balanced.
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Displacement −b′/N2 in a y = 0 cross section at t = 20
fi

�/�

�b/�

�i/�

� = 0.25 � = 0.5 � = 0.75

Figure 8. Comparison of the full (top), balanced (middle) and unbalanced (bottom)
components of the displacement field D (in a y = 0 cross-section) at 20 QG time units
for c = 10 and for the PV-based Rossby numbers indicated. The contour intervals for the
full and balanced fields are ∆= 0.008. Here, the unbalanced contour interval is 1/50th of the
balanced contour intervals.
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�

fi fi
fi fi

Three Rossby numbers

ϵ are compared.

The imbalance in this

field is a much smaller

fraction of the total.
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Comparison of balancing methods for −b′/N2

OPV Converged NQG NQG with 2 iterations

�b/�

�i/�

Figure 12. Comparison of the balanced (top row) and unbalanced (bottom row) isopycnal
displacement obtained using OPV (left column), converged NQG (middle column) and NQG
with 2 iterations (right column) — now in a z =0 cross-section—at t = 20 time units for
� = 0.75. The balanced contour interval is ∆= 0.008 and the unbalanced coutour interval is
∆/50.
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A single rotating uniform-PV ellipsoid

From Tsang &
Dritschel JFM
762 (2015):

Ellipsoidal vortices in
rotating stratified
fluids: beyond the
quasi-geostrophic
approximation

• Here, ϵ = q0
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A single rotating uniform-PV ellipsoid
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Balance decomposition — summary

Balanced and imbalanced components

Total

Balanced flow
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A single rotating ellipsoid; balance decomposition — ζ

Ellipsoidal vortices in rotating stratified fluids 215
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FIGURE 8. (Colour online) A vertical y–z cross-section at x = −σ−1
π/32 of the scaled

vertical vorticity ζ/f for a cyclonic vortex or ‘cyclone’ (a–c) and an anticyclonic vortex
or ‘anticyclone’ (d–f ) with q0 = ±0.25 respectively. The initial aspect ratios are λ0 = 0.8
and µ0 = 0.4 in both cases. The QG balanced part ζQG/f is shown in (a) and (d), the
ageostrophic balanced part f in (b) and (e), the imbalanced part f in (c) and (f ).
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A single rotating ellipsoid; balance decomposition — w
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Energy: quantification of imbalance
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FIGURE 18. (Colour online) Log–log plot of the energy norms for the QG, ageostrophic
balanced and imbalanced fields, defined in (5.4), versus the PV-based Rossby number q0.
Circles represent cyclonic states and crosses anticyclonic states. The initial aspect ratios
of the vortex are λ0 = 0.3 and µ0 = 1.6.
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An application to shallow-water MHD

J. Fluid Mech. (2023), vol. 973, A17, doi:10.1017/jfm.2023.746

The magnetic non-hydrostatic shallow-water
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Basic equations

Under the hydrostatic approximation, the complete set of equations for the
horizontal velocity u, magnetic field B and dimensionless height anomaly
h̃ = (h − H)/H are
momentum

Du + f × u = −c2∇h̃ + jz × B ,

induction
DB − B · ∇u = η∇2B ,

and mass
∂h̃

∂t
+∇ · ((1 + h̃)u) = 0 ,

where f is the Coriolis frequency, c2 = gH, g is gravity, H is the mean
fluid depth, jz in the z-component of the current density, and η is the
magnetic diffusivity.
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Results: a vortex in a magnetic field

We follow Dritschel, Diamond & Tobias (2018) to study how a magnetic
field disrupts a vortex.

Here we study finite LD = c/f and shallow-water effects. Initially,

ζ =
ε f e−(r/R)2/2

2(1− e−1/2)
− C

with f = 4π and R = 5π/32 in a [−π, π)2 periodic domain.

The corresponding maximum velocity U0 =
1
2ω0R where ω0 = ε f .

We take B = (Bx ,By ) = (B0/(1 + h̃), 0) so that the 3D magnetic field is
tangent to the upper free surface initially.
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We specify B0 through the ‘gain’

g ≡ B0/d

U0

where d = ∆x/R is the dimensionless diffusion length; note
√
η/ω0 = ∆x .

B0/d is the maximum expected magnetic field strength after amplification.

The magnetic Reynolds number

Rm =
U0R

η
=

1

2d2
.

• Rm = 800 at the default grid resolution, ng = 512.
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Effect of varying LD ; g = 2

ζ(x , t̃) shown. Note ε = 1.6L2D to keep h̃ = O(1) and similar in all cases.
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Evolution of the Rossby number (left), and maximum horizontal magnetic
field scaled by the maximum flow speed U0 (right).
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The actual gain ∥B∥max/U0 falls short of the estimate g = 2.
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Effect of varying Rm; LD = 1/4, ε = 0.1, g = 2
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ζ(x , 25) at Rm = 3200
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jz(x , 25) at Rm = 3200
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δ(x , 25) at Rm = 3200
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Evolution of the Rossby number (left), and maximum horizontal magnetic
field scaled by the maximum flow speed U0 (right).
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• The growth of ζ is caused by the magnetic Lorentz force and
closely correlates with jz .

• The actual gain ∥B∥max/U0 decreases with Rm.
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Conclusions (1/2)

• The concept of balance is especially useful in deducing imbalance,
e.g. inertia–gravity waves, in complex nonlinear flows.

• Contour Advection can be used to efficiently study a broad range of
idealised geophysical and astrophysical flows.

• Contour Advection is several orders of magnitude more efficient —
for the same accuracy — than the pseudo-spectral method.

• A non-hydrostatic shallow-water model can be derived simply by
vertically averaging, assuming only that the horizontal velocity (and
magnetic) fields are depth independent.

• Non-hydrostatic effects limit the range of frequencies associated with
inertia–gravity waves, and also limit their excitation in turbulent flows.
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Conclusions (2/2)

• 3D non-hydrostatic rotating stratified flows remain close to balance for
Rossby numbers < O(1).

• The balance goes beyond quasi-geostrophic, which is simply hydrostatic
and geostrophic. Even ageostrophic motions may be dominantly balanced.

• Magnetic fields break PV conservation: they generally take the twist
out of vorticity.

• Shallow-water MHD flows nonetheless enjoy a form of balance, with
weak horizontal divergence.

• Decreasing Rossby deformation lengths LD =
√
gH/f increases the

destructive impact of a magnetic field on vortex evolution.
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