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V-states for the Euler equations

The study of steadily-rotating vortex patch solutions of the 2D Euler
equations

Dω

Dt
= 0 (1)

∇2ψ = ω (2)

u = ∇⊥ψ

began with Deem & Zabusky (1978). Before this, the ellipse was the only
known steadily-rotating state.

They found m-fold symmetric generalisations (m > 2) of the ellipse whose
limiting forms exhibit 90◦ corners on their boundaries (at stagnation
points).
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Contour Dynamics

For a vortex patch, the vorticity is uniform ω = ω0 within a region D of R2

and zero otherwise. Stokes’ theorem then reduces the Euler equations to

dx
dt

= u(x , t) = −ω0

2π

∮
C
log(|x ′ − x |)dx ′ (3)

where C is the bounding contour (or contours) of D and x ′ ∈ C.
• For x ∈ C, this is a closed system of equations for the evolution of C.

These are the equations of Contour Dynamics and go back to Zabusky,
Hughes & Roberts (1979) (see also Berk & Roberts 1965).

V-states are steadily-rotating or steadily-translating solutions of (3).
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Vorticity interfaces: Origins of Contour Dynamics

Consider two fluid particles having the same vorticity, or potential vorticity
in geophysical fluids, ω = ω0, say.

If we exchange their positions, the distribution of ω(x , t) is unaffected.
Therefore, this has no consequence for the flow evolution.

Now consider a vorticity interface, a curve C dividing the plane into two
regions of uniform vorticity, ω+ and ω−.

ω+

ω−

The above ‘particle exchange symmetry’ means that only C and the jump
in vorticity ∆ω = ω+ − ω− across it matter in determining the velocity
field u.
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Vorticity interfaces

Let C be directed such that vorticity ω+ lies to its left, and ω− lies to its
right. (C can be open or closed.)

Suppose the streamfunction ψ solves Lψ = ω for some linear operator L
(e.g. ∇2), and we can write the solution in terms of a Green function
G (x ′ − x) (e.g. (2π)−1 log |x ′ − x | when L = ∇2):

ψ(x , t) =
∫ ∫

ω(x ′, t)G (x ′ − x) dxdy

=ω+

∫ ∫
R+

G (x ′ − x) dx ′dy ′+

ω−

∫ ∫
R−

G (x ′ − x) dx ′dy ′

where R+ and R− are the regions where ω = ω+ and ω−, respectively.
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Vorticity interfaces

Consider the associated velocity field, u = −∂ψ/∂y and v = ∂ψ/∂x :

u(x , t) =ω+

∫ ∫
R+

(
− ∂

∂y
,
∂

∂x

)
G (x ′ − x)dx ′dy ′+

ω−

∫ ∫
R−

(
− ∂

∂y
,
∂

∂x

)
G (x ′ − x) dx ′dy ′ .

However, the function G (x ′ − x) = G (x − x ′) is symmetric in x ′ and x .
Hence, the above can equally-well be written

u(x , t) =ω+

∫ ∫
R+

(
∂

∂y ′
, − ∂

∂x ′

)
G (x ′ − x)dx ′dy ′+

ω−

∫ ∫
R−

(
∂

∂y ′
, − ∂

∂x ′

)
G (x ′ − x) dx ′dy ′ .
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Vorticity interfaces

Green’s theorem (Stokes’ theorem in the plane) tells us∫ ∫
R

(
∂Q

∂x ′
− ∂P

∂y ′

)
=

∫
C
P dx ′ + Q dy ′

for (almost) any functions P(x ′, y ′) and Q(x ′, y ′). Here the contour C is
traversed so that R is always on its left.

Therefore, taking P = G (x ′ − x) and Q = 0 for u, and taking P = 0 and
Q = G (x ′ − x) for v , we have

u(x , t) = −∆ω

∫
C
G (x ′ − x)dx ′ ,

a remarkably compact expression! The jump in vorticity ∆ω arises because
C is traversed in opposite directions in the two regions.
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Vorticity interfaces

The dynamics cannot depend on fluid particles in the regions outside C,
since these particles can be exchanged arbitrarily with no effect on the
velocity field u.

⇒ Therefore, the dynamics is entirely dependent on C.

We can deduce how C evolves by evaluating u on C and equating this to
the material derivative of a particle on C:

dx
dt

= −∆ω

∫
C
G (x ′ − x) dx ′ .

This is a self-contained equation for the evolution of C.

For 2D planar flow, this is known as ‘Contour Dynamics’ (Zabusky,
Hughes & Roberts 1979), and in Plasma Physics, it is known as the
‘Water Bag Model’ (Berk & Roberts 1965).
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V-states for the Euler equations

Dritschel (1985) found co-rotating multiple-vortex states for m = 2 to 8
vortices, generalising the earlier work of Saffman & Szeto (1980) for
m = 2 only.
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V-states for the Euler equations

Love (1893) examined the stability of the ellipse and found a sequence of
instabilities, starting with an m = 3 mode at aspect ratio λ = 1/3, then
m = 4 at λ ≈ 0.215, etc.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0022112086001696
Downloaded from https:/www.cambridge.org/core. The University of St Andrews, on 30 Jan 2017 at 10:38:59, subject to the Cambridge Core terms of use, available at
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V-states for the Euler equations

Kamm (1987) and Cerretelli and Williamson (2003) found new V-states
bifurcating from the elliptical solutions at the points of marginal stability.
From Luzzatto-Fegiz and Williamson (2010):

Stability of elliptical vortices from “Imperfect–Velocity–Impulse” diagrams 187

Two vortices
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Fig. 5 Overall view of the resulting IVI diagram, showing the first three branches bifurcating from the elliptical states

locations of the changes of stability from our methodology match Love’s prediction to at least seven significant
figures. Indeed, since the changes of stability in our study are found by determining the intersection between
the bifurcated and the basic solution branches, the precision in the stability boundaries is limited only by the
numerical accuracy with which the steady states are computed.

Love’s analysis formed the basis of part of the work of Kamm [7], who computed the beginning of the
bifurcated branches presented here; the m = 4 branch was later explored in its entirety by Cerretelli and
Williamson [2], who approached the problem by initially considering two co-rotating vortices with lower
�. Due to the large computational cost associated with previous numerical methods [7], it appears that the
m = 3, 5 families (including the limiting shapes) had not been computed before.

It should be pointed out that the stability of all of these bifurcated branches was previously unknown. Fur-
thermore, while attempting to apply the approach of Saffman and Szeto, involving a (J, E) plot, to determine
stability, Kamm found that all of the new equilibria had the same energy and impulse as a member of the
elliptical family (to numerical accuracy). The bifurcated branches were therefore indistinguishable from the
elliptical family in a plot of E versus J , preventing Kamm from reaching any conclusions regarding stability.
This appears to be a further problem that can be associated with the use of an impulse–energy plot, which
should be considered in addition to the theoretical objections previously posed by Dritschel [4]. In contrast,
the use of a velocity-impulse diagram does not appear to suffer from the same issues.

In spite of presenting a significant amount of fine-scale details in the velocity–impulse plot, we must note
that the bifurcations were easily detected with the imperfection approach presented here. As noted in Sect. 2,
the step change in the control parameter was automatically adjusted to preserve accuracy; we did not need to
pose further restrictions to ensure that bifurcations were detected. Therefore an IVI diagram (coupled with a
suitable numerical method) is found to be reliable in revealing bifurcations. Once a new branch is detected,
the turning points can be carefully mapped by employing progressively smaller step sizes.

Finally, we should remark that, as a part of a separate work, the authors examine the m = 4 branch through
a linear stability analysis [14], finding accurate agreement with the results presented here.

4 Conclusions

In this paper, we successfully employ the “Imperfect–Velocity–Impulse” (IVI) diagram methodology to deter-
mine the stability of elliptical vortices, providing a detailed example of the application of this approach to a
classical flow. The imperfection used to reveal bifurcations is constructed by placing either point vortices, or
sources and sinks, at the stagnation points of the co-rotating flow; the steady states are then computed using a
novel numerical approach capable of accurately resolving vortex shapes of lesser symmetry.

The first three bifurcations for the family of Kirchhoff elliptical vortices (corresponding to instabilities
with azimuthal wavenumber m = 3, 4 and 5) are revealed; their detection appears to be insensitive to the
numerical parameters employed. Inspection of the IVI diagram gives the stability properties for the elliptical
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V-states for the quasi-geostrophic shallow-water equations

An important geophysical fluid dynamics generalisation is to consider the
quasi-geostrophic approximation of the shallow-water equations.

This system looks similar to the 2D Euler equations except for the
inversion relation between ψ and q, here the ‘potential vorticity’ (PV):

Dq

Dt
= 0 (4)

∇2ψ − γ2ψ = q (5)

u = ∇⊥ψ

where γ = 1/LD and LD is the Rossby deformation length controlling the
elasticity of the free surface.
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Contour Dynamics

For a vortex patch, the quasi-geostrophic equations may also be reduced
to Contour Dynamics:

dx
dt

= u(x , t) =
∆q

2π

∮
C
K0(γ|x ′ − x |)dx ′ (6)

where K0(r) is the modified Bessel function of order 0.

Again, when both x ∈ C and x ′ ∈ C, (6) is a closed system of equations
for the evolution of C.

V-states are steadily-rotating or steadily-translating solutions of (6).

Polvani, Zabusky and Flierl (1989) found V-states for both one and two
vortices (also in one or two layers).
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Two-fold symmetric V-states

Plotka and Dritschel (2010) extended the single-vortex steady states.

further and repeat the procedure until the method no longer converges (this normally
occurs for very small � between 0.003 and 0.007, depending on �). This generates a
family of equilibria varying with � for a fixed value of �. To start the procedure, we
need a guess for the rotation rate O relevant to a near circular vortex (1� �� 1). From
a linear stability analysis (appendix A), it can be shown that for an m-fold symmetric
wave O¼ I1(�)K1(�)� Im(�)Km(�), where Im and Km are the modified Bessel functions
of the mth order. Note that we confine our attention to m¼ 2.

Typically, 400 nodes are used to represent the vortex boundary C. These are
connected together by local cubic splines to achieve high accuracy, as discussed in
Dritschel (1988). 800 nodes are used when �4 1, in part to accurately capture the weak
instability occurring for very small � (when the vortex is strongly distorted), and in part
for long-time accuracy in the nonlinear simulations (the evolution slows down markedly
as � increases beyond 1, see below). The difference in the vortex shape between 400 and
800 nodes, however, is much smaller than the line width plotted in figure 2.

We generate families of equilibria for �¼ 0.02, 0.25, 0.5 and thereafter in increments
of ��¼ 0.5 to �¼ 10 (22 families in total). This range more than sufficiently
encompasses the range of values thought to characterise vortices in the oceans, the
atmosphere and in other planetary atmospheres. Note that the barotropic case
corresponds to �¼ 0.

2.3. Properties of the equilibria

A few examples of the equilibrium contour shapes are presented in figure 3 for three
different values of �. In each frame, we illustrate three different aspect ratios: �¼ 0.5, the
aspect ratio at marginal stability �c (section 3), and the smallest aspect ratio for which we
achieve convergence �f. Here, and for all � investigated, the shape deforms into a
dumbbell shape, nearly pinching off as �! 0. It is likely that the limiting form for �¼ 0
is a pair of vortices touching at the origin (see Polvani et al. (1989) for comparable
examples of doubly-connected equilibria). Note that as � increases, the equilibria
become less elongated in x with decreasing �. This is due to the shortening interaction
range, proportional to LD, as � increases. As �!1, the limiting form for �! 0 is likely
to be two circular patches joined by a bridge at a distance r¼O(LD) from the origin.

There is a gradual transition from quasi-elliptical equilibria with � close to 1 to
dumbbell-shaped equilibria for small �. This is quantified in figure 4 by comparing �
with the elliptical aspect ratio �e obtained from the second-order spatial moments of the
vortex patch. For the barotropic Kirchhoff family of equilibria (�¼ 0), each member is
an ellipse, hence �¼ �e. As � increases, �e peels away from this line at progressively
larger � – this indicates that the vortex is becoming dumbbell-shaped. The family for

Figure 3. Selected equilibrium contour shapes for �¼ 0.5 (left), 3.0 (middle) and 8.0 (right). In each frame,
we show the equilibrium contours for �¼ 0.5, for the aspect ratio �c at marginal stability, and for the smallest
aspect ratio attainable �f. The plot window is the rectangle jxj � 2:2, jyj91:18.

Quasi-geostrophic shallow-water vortex–patch equilibria 5
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� ¼ 0.02, which is close to barotropic, evidently exhibits a bifurcation around �¼ 0.21.
For �4 0.21, the equilibria are very close to elliptical in shape, but for �5 0.21, they
become dumbbell-shaped, like all the other non-zero � families. This bifurcation is
associated with a known bifurcation occurring in the barotropic family at �¼ �4¼
21/2þ 1� 2(21/2þ 1)1/2¼ 0.216845 . . . . This point coincides with the margin of stability
for a wave 4 disturbance (Love 1893, Dritschel 1986). Moreover, Kamm (1987),
Cerretelli and Williamson (2003a) and Luzzatto-Fegiz and Williamson (2010) have
shown that there are two new branches of equilibria splitting off from the elliptical
branch at �¼ �4. One branch is dumbbell-shaped, while the other is eye-shaped (more
pointed at the extremities). For non-zero �, only the dumbbell-shaped equilibria are
connected by continuous deformations to circular equilibria at �¼ 1. The eye-shaped
equilibria presumably still exist, at least for small �, but they lie on an isolated branch in
parameter space. The apparent bifurcation occurring at small � near �¼ �4 is clearly
visible in the particle rotation rate Op (the average rate at which fluid particles circulate
around the boundary), shown in figure 5 for the four smallest values of � examined in
this study. For �¼ 0.02, we see that Op strongly dips towards �¼ �4, while as �
increases, Op flattens and there is less sign of the bifurcation. Similar sensitivity is seen
in the linear stability of the equilibria, discussed further in section 3.2.

Further properties of the equilibria are shown in figure 6 as a function of � and �. In
figure 6(a) we have the angular impulse J¼ q0

R R
D(x

2þ y2)dx dy, where D is the region
inside the vortex patch, in (b) the total energy E¼�(q0/2)

R R
D dxdy (appendix B), in

(c) the rotation rate O and in (d) the particle rotation rate Op. Note that the barotropic
Kirchhoff family is not represented at � ¼ 0; rather we use the numerically generated
family for �¼ 0.02, which is dumbbell-shaped like all other families at small �. Turning
first to the angular impulse J and energy E, for every � considered we find that J
exhibits a maximum at the same point � where E exhibits a minimum (this is marked by
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Figure 4. Comparison of the aspect ratio � and the elliptical aspect ratio �e, obtained from the second
spatial moments,

R R
x2 dx dy and

R R
y2 dx dy of the vortex patch. The equilibrium families � ¼ 1, 2, 5 and 10

are shown by thin lines, the family �¼ 0.02 by a bold line and the barotropic Kirchhoff family � ¼ 0 by the
dashed line. The curve for �¼ 10 displays the most distortion for small �. On the left, we see a zoom of the
figure on the right.

6 H. Piotka and D. G. Dritschel
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Two-fold symmetric V-states

Plotka and Dritschel (2010) observed a continuous variation in the steady
states from a near elliptical form to a dumbbell shape, even for γ ≪ 1.

One might expect steady states near the Euler ellipses for smaller aspect
ratio, but none were found.

We (Dritschel, Hmidi & Renault, Arch. Rat. Mech. Anal. 231(3), 2019)
suspected that these steady states might exist but they are inaccessible
from the circular state — i.e. they no longer lie on the same solution
branch.

To access this distinct branch, it was necessary to develop a more
sophisticated method to compute steady states.

David Dritschel (St Andrews) Vortex patch dynamics November 2024 16 / 60



Two-fold symmetric V-states: numerical method

The method uses a Newton iteration of the fully linearised equations about
a guess for the steady state.

The linearisation itself makes use of the ‘travel-time coordinate’ ϑ = Ωpt
formulated in Dritschel (1995), and first implemented by Luzzatto-Fegiz
and Williamson (2010) for computing steady states.

Ωp is the particle rotation frequency.

A correction for the vortex boundary shape (x , y) is found using

xnew = x +
ηyϑ

x2ϑ + y2ϑ
, ynew = y − ηxϑ

x2ϑ + y2ϑ

— this is a normal perturbation to the previous boundary shape. Note: η
has units of area.
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Two-fold symmetric V-states: numerical method

The quantity η is determined from

Ωpη(ϑ) +

∫ 2π

0
η(ϑ′)G (|x(ϑ′)− x(ϑ)|)dϑ′ = C − ψ(ϑ) +

1

2
Ω(x2 + y2)

where
• Ωp = 2π/

∮
ds/|u| is the particle rotation frequency around the vortex

boundary,
• ∆q (= 1) is the jump in potential vorticity crossing into the vortex,
• G (r) = −(2π)−1K0(γr) is the Green function for the Helmholtz
inversion operator,
• C is an unimportant constant,
• ψ(ϑ) is the streamfunction on the vortex boundary from the previous
guess, and
• Ω is the specified equilibrium rotation rate.
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Two-fold symmetric V-states: numerical method

• Optionally, we can specify the vortex angular impulse

J =

∫∫
(x2 + y2)q(x , y)dxdy =

∆q

4

∮
C
(x2 + y2)(xdy − ydx)

and determine Ω.

In practice, we add another equation, a linearisation of the above,

∆q

∫ 2π

0
η(ϑ)[x2(ϑ) + y2(ϑ)]dϑ = J − J̄

where J̄ is the angular impulse of the previous guess.

This enables us to determine a correction Ω′ to the rotation rate of the
previous guess.
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Two-fold symmetric V-states: numerical method

Numerically, integration is carried out by two-point Gaussian quadrature
taking care to remove and exactly evaluate the logarithmic singularity in G .

800 points, approximately equally spaced in ϑ, are used to represent the
vortex boundary.

The perturbation function η is expanded as a truncated, symmetric Fourier
series:

η(ϑ) =
N∑

n=1

an cos(2nϑ)

The resulting linear system is solved for the coefficients an (and Ω′) via an
N × N matrix (or an (N + 1)× (N + 1) matrix). Here, we take N = 32.

An extra constant a0 is added to η to ensure area conservation.
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Two-fold symmetric V-states: results

As suspected, at any finite γ, a disconnected branch of solutions arises
near the m = 4 margin of stability for the Euler ellipses (γ = 0).

γ = 0.01
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Two-fold symmetric V-states: results

However, the angular impulse J is not a particularly good statistic to see
this.

γ = 0.01
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Limiting vortex shapes and ψ for γ = 0.01

m = 4 (a) m = 4 (b)

m = 6 (a) m = 6 (b)
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Limiting vortex shapes and ψ for γ = 0.01

m = 8 (a) m = 8 (b)

m = 10 (a) m = 10 (b)
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Larger γ

At larger γ, a second disconnected branch of solutions arises near the
m = 6 margin of stability for the Euler ellipses! Are all disconnected?

γ = 0.1
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Larger γ

It gets even more strange as γ increases further. Here γ = 1.
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Three-fold symmetric V-states

For the three-fold symmetric V-states, originally found for the Euler
equations by Deem & Zabusky (1978), we (Dritschel, Hmidi & Renault,
2019) also suspected that there is another, separated branch of steady
states.

This was discovered first at large γ, then traced all the way back to γ = 0.

We employed the same numerical method as before, optionally varying the
vortex rotation rate Ω or the vortex angular impulse J.

We had to interchangeably vary Ω or J to trace the solution branches
around many folds and spirals.
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Three-fold symmetric V-states: equilibria

Multiple turning points occur: the branch spirals endless times as Ωp → 0.

Here, the main solution branch for γ = 2 is shown.
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Three-fold symmetric V-states: bifurcation

γ = 3.5
γ = 3.6
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Three-fold symmetric V-states: limiting states

Limiting states for γ = 3.6 (Ω increases from left to right)

• For smaller γ, the limiting state is triangular, as on the right. Then the
three and four-vortex states are on a separate branch of solutions.

• For larger γ, the limiting state is the three-vortex state, as in the middle.
Then the triangular and four-vortex states are on a separate branch of
solutions.
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Three-fold symmetric V-states: Euler limit

γ = 0

blue: stable
red: unstable
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Three-fold symmetric V-states: Euler limit

Limiting states for γ = 0 (Ω increases from left to right)

new Dritschel (1985) Deem & Zabusky (1978)
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Three-fold symmetric V-states: Summary of all states
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Three-fold symmetric V-states: Evolution for γ = 0
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Three-fold symmetric V-states: Evolution for γ = 3.6
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Like-signed, unequal vortices: Co-rotating equilibria

q1, A1 q2, A2

δ

Key parameters:

(1) Area ratio A2/A1,
(2) PV ratio q2/q1,
(3) the inner gap δ, and
(4) the inverse Rossby deformation length γ.
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Like-signed, unequal vortices: Co-rotating equilibria

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−0.5

0.0

0.5

V-states having A2/A1 = 0.5, q2/q1 = 2 and γ = 1.
Shown are 4 different values of the gap: δ = 1 (lightest grey),
δ = 0.8 (light grey), δ = 0.6 (dark grey) and δ = 0.4 (black).

From Jalali & Dritschel, GAFD 2018.
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Linear stability of vortex patch equilibria: The method

To maximally simplify the analysis, the boundary C of each equilibrium
vortex patch is parametrised by the travel-time coordinate ϑ:

x = (x̄(ϑ), ȳ(ϑ))

in the frame of reference rotating (or translating) with the equilibrium.

The travel-time coordinate ϑ = Ωpt = 2πt/T where

T =

∮
C

ds

ū∥

is the orbital period, s is arc length, and u∥ is the tangential velocity along
C. Similarly,

t(s) =

∫ s

0

ds

ū∥

given some chosen starting point at s = 0.
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Linear stability of vortex patch equilibria: The method

The optimal way to express disturbances is through

x(ϑ, t) = x̄ +
ηȳϑ

x̄2ϑ + ȳ2ϑ
, y(ϑ, t) = ȳ − ηx̄ϑ

x̄2ϑ + ȳ2ϑ

where a ϑ subscript denotes differentiation, and η(ϑ, t) is the displacement
function (and has units of area) — Dritschel, JFM 293, 1995, Appendix B.

Then, expanding the Contour Dynamics equations to first order in η,

∂η

∂t
+Ωp

∂η

∂ϑ
=
∂F

∂ϑ

F (ϑ, t) = −∆q

∫ 2π

0
η(α, t)G (x̄(α)− x̄(ϑ))dα (7)

where G (x ′ − x) is the Green function of the equation Lψ = q relating
streamfunction ψ to PV (or vorticity) q. The PV jump across C is ∆q.
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Linear stability of vortex patch equilibria: The method

The Green function for various flow models:

Planar 2D (Euler), ∇2ψ = ω

⇒ G (r) = (2π)−1 log(|r |)

QG shallow-water, ∇2ψ − γ2ψ = q

⇒ G (r) = −(2π)−1K0(γ|r |)

2D (Euler) on a cylinder (or x periodic), ∇2ψ = ω

⇒ G (x ′ − x , y ′ − y) = (4π)−1 log(cosh(y ′ − y)− cos(x ′ − x))

3D QG, ∇2
3Dψ = q

⇒ G (r) = −(4π|r |)−1.
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Linear stability of vortex patch equilibria: The method

The method trivially generalises to any number of contours Ck ,
k = 1, ..., n with PV jumps ∆qk :

∂ηk
∂t

+Ωp,k
∂ηk
∂ϑk

=
∂Fk
∂ϑk

Fk(ϑk , t) = −
n∑

j=1

∆qj

∫ 2π

0
ηj(ϑ

′
j , t)G (x̄j(ϑ′j)− x̄k(ϑk))dϑ′j . (8)

Remarkably, it does not explicitly depend on the rotation rate Ω or
translation rate (U,V ) of the equilibrium configuration.

Numerically, ηk is expanded as a truncated Fourier series in ϑk :

ηk(ϑk , t) = e−iσt
M∑

m=1

Am cosmϑ+ Bm sinmϑ

where σ is determined as an eigenvalue.
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Linear stability: results

Real and imaginary parts of σ, respectively frequency and growth rate,
for V-states having A2/A1 = 0.5, q2/q1 = 2 and γ = 1.

0.40 0.45 0.50 0.55 0.60
δ

−2

0

2

σ
r,

σ
i

• Instability occurs below a critical gap, δ = δc ≈ 0.536.
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Minimum gap to ensure linear stability
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Critical gap δ = δc below which equilibria are unstable, plotted versus the
vortex area fraction fA = A2/(A1 + A2) and the vortex circulation fraction
fΓ = Γ2/(Γ1 + Γ2), for several values of γ.
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Nonlinear evolution of unstable V-states

γ = 0.5 γ = 1 γ = 2 γ = 4
δ = 0.265 δ = 0.265 δ = 0.255 δ = 0.230
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Here, A2/A1 = 0.25 and q2/q1 = 2. [movies]
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Opposite-signed equilibria and linear stability

γ = 1, stable marginal stability
marginal & unstable γ = 0, 0.5, 1, 2, 4
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Here, A2/A1 = 0.5 and q2/q1 = −0.5. (Jalali & Dritschel, GAFD 2020).
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Opposite-signed equilibria and linear stability

γ = 1, stable marginal stability
marginal & unstable γ = 0, 0.5, 1, 2, 4
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Here, A2/A1 = 1.5 and q2/q1 = −4/21. (Jalali & Dritschel, GAFD 2020).
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Nonlinear evolution
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• This is a near-limiting translating V-state with γ = 4. [movies] •
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V-states in 3D quasi-geostrophic flows: Foundations

In the three-dimensional (3D) quasi-geostrophic (QG) model, for constant
Coriolis and buoyancy frequencies, f and N, the layerwise-2D flow
(u(x , y , z , t), v(x , y , z , t)) is determined by

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= ∇2ψ = q and u = −∂ψ

∂y
& v =

∂ψ

∂x
,

where q is the QG potential vorticity (PV) and z has been s t r e t c h e d by
N/f (typically ≫ 1 in the atmosphere and oceans).

In the absence of forcing and diabatic effects, PV is materially conserved :

Dq

Dt
=
∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
= 0 .
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V-states in 3D quasi-geostrophic flows: Origins in 2D

Kirchhoff (1876) discovered an exact, steadily-rotating elliptical patch
of uniform vorticity ω = ω0 in an ideal 2D fluid.

b
a

Moore & Saffman (1971) then Kida (1981) generalised this solution
to include a background straining and rotating flow — shape and
orientation generally time dependent.

Dritschel (1990) examined linear and nonlinear stability — rich!

Ω =
ω0λ

(1 + λ)2
where λ =

b

a
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The ellipsoid

In the 3D Quasi-Geostrophic model of
geophysical flows, Zhmur & Shchepetkin (1991)
and Meacham (1992) discovered the ellipsoidal
analogues of Kirchhoff’s elliptical vortex.

An ellipsoid x2/a2 + y2/b2 + z2/c2 ≤ 1
of uniform potential vorticity q = q0
rotates steadily at a rate Ω = q0F (λ, µ)
where λ = b/a and µ = c/

√
ab.

These solutions stem from work by
Maclaurin (1742) and Laplace (1784).

Dritschel, Scott & Reinaud (2005) examined
linear and nonlinear stability.

λ.

µ.

3

2

1

0.5                   1

0.2

0.15

0.1
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An historical survey

Miyazaki, Ueno & Shimonishi (1999) found steadily-rotating tilted
spheroidal vortices and investigated their linear stability.

Meacham, Pankratov, Shchepetkin & Zhmur (1994), Hashimoto,
Shimonishi & Miyazaki (1999) and McKiver & Dritschel (2003)
added a background straining flow (leads to time-dependent shape
variations).

McKiver & Dritschel (2006) examined
the stability of all steady vortices
in a general straining flow.

Dritschel, McKiver & Reinaud (2004)
developed the Ellipsoidal Model.

etc...!
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Contour Dynamics

The 3D QG model has a Contour Dynamics formulation in R3.

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄
Consider a volume V bounded by
contours C(z) at each height z .
Let q = ∆q (uniform PV) inside V
and q = 0 outside.

Using the Green function −1/(4π|x ′ − x |) for Laplace’s operator in 3D,
we have

(u(x , t), v(x , t)) =
∆q

4π

∫
dz ′

∮
C(z ′)

(dx ′,dy ′)

|x ′ − x |
where x = (x , y , z) (Dritschel, JFM 455 (2002), Appendix A).

This follows because the Green function is symmetric in x and x ′.
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Contour Dynamics

In the numerical algorithm, the total height spanned by V is discretized
into n layers of equal thickness, ∆z . Over each layer, (x , y) ∈ C is taken
to be independent of z .

Then, the z integral over each layer can be performed exactly. Evaluating
it in the middle of each layer, at z = z̄j (j = 1, , ..., n) leads to(

dxj
dt
,
dyj
dt

)
= (uj , vj) =

∆q

4π

n∑
k=1

∮
Ck

(
λ+jk − λ−jk

) (
dx ′k , dy

′
k

)
where

λ±jk ≡ log

[(
ρ2 + σ2

) 1
2 + σ

]
, σ = |z̄j − z̄k | ± 1

2∆z

and ρ2 = (xj − x ′k)
2 + (yj − y ′k)

2 — all with O(∆z2) error.
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Like and opposite-signed V-states in 3D QG

∆zc/H = 0 ∆zc/H = 1/4 ∆zc/H = 1/2 ∆zc/H = 3/4

From Reinaud & Dritschel JFM 848 (2018) and JFM 971 (2023).
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Multi-polar (like-signed) V-states in 3D QG

Top view Side view

From Reinaud AIP Advances 12 (2022).
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Multi-polar (like-signed) V-states in 3D QG

Top view Side view

From Reinaud AIP Advances 12 (2022).
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Nonlinear evolution
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FIGURE 7. Evolution of a uniform-PV torus with R0/r0 = 7.2. Top view of the bounding
contours at t = 0, 26, 129 and 408.

FIGURE 8. (Colour online) Orthographic view of the PV field at an angle of 60◦ from the
vertical for the torus with R0/r0 = 7.2 at t = 100. The horizontal lines indicate the vertical
extent of the domain of view, here |z|� 0.5. Flow structures seen through the lower front
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Nonlinear evolution

Left: JUNO image of the south pole of Jupiter from Adriani et al, Nature
555 (2018).

2

Right: Contour Surgery simulation from Reinaud & Dritschel, JFM 863
(2019). [movies]
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Conclusions: part 1 of 2

Vortex patches in many flow models are governed by a reduced dynamical
system, ‘Contour Dynamics’: only vorticity interfaces matter.

Such flow models include — but are not limited to — 2D planar (Euler),
shallow-water quasi-geostrophic, and 3D quasi-geostrophic.

In the shallow-water quasi-geostrophic model, at finite Rossby deformation
length LD, the Euler elliptical branch of steady-state solutions separates
near the m = 4 marginal stability of the Euler ellipses (λ ≈ 0.215).

In fact separations appear to occur at all even higher-order bifurcations
(m = 6, 8, 10, etc.).
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Conclusions: part 2 of 2

A new, separated branch of solutions has been discovered for the
three-fold symmetric V-states. The limiting states of this new branch and
the one starting from circular states change around γ = 1/LD = 3.5.

There are a plethora of multiply-connected V-states, e.g. both like-signed
and opposite-signed vortex pairs. They are stable unless sufficiently close
together.

V-states of the 3D quasi-geostrophic model resemble patterns observed at
the poles of the gas giant planets. In particular, patterns of 5 or 8 vortices
exhibit robust stability.
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