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V-states for the Euler equations

The study of steadily-rotating vortex patch solutions of the 2D Euler
equations

Dw

Vi) =w (2)
u=vty

began with Deem & Zabusky (1978). Before this, the ellipse was the only
known steadily-rotating state.

They found m-fold symmetric generalisations (m > 2) of the ellipse whose
limiting forms exhibit 90° corners on their boundaries (at stagnation
points).
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Contour Dynamics

For a vortex patch, the vorticity is uniform w = wg within a region D of R?
and zero otherwise. Stokes' theorem then reduces the Euler equations to

()= -2 f log(|x’ — x|)d 3)

where C is the bounding contour (or contours) of D and x" € C.
e For x € C, this is a closed system of equations for the evolution of C.

These are the equations of Contour Dynamics and go back to Zabusky,
Hughes & Roberts (1979) (see also Berk & Roberts 1965). J

V-states are steadily-rotating or steadily-translating solutions of (3).
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Vorticity interfaces: Origins of Contour Dynamics

Consider two fluid particles having the same vorticity, or potential vorticity
in geophysical fluids, w = wyp, say.

If we exchange their positions, the distribution of w(x, t) is unaffected.
Therefore, this has no consequence for the flow evolution.

Now consider a vorticity interface, a curve C dividing the plane into two
regions of uniform vorticity, wy and w_.
W

w—

The above ‘particle exchange symmetry’ means that only C and the jump
in vorticity Aw = w4 — w_ across it matter in determining the velocity
field u.
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Vorticity interfaces

Let C be directed such that vorticity w4 lies to its left, and w_ lies to its
right. (C can be open or closed.)

Suppose the streamfunction 1 solves L1 = w for some linear operator L
(e.g. V?), and we can write the solution in terms of a Green function
G(x' — x) (e.g. (27) tlog|x’ — x| when £ = V?):

P(x,t) = //w(x',t)G(x/—x) dxdy
:w+//R+ G(x' — x)dx'dy’+
// (x' — x)dx'dy’

where R and R_ are the regions where w = w; and w_, respectively.
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Vorticity interfaces

Consider the associated velocity field, u = —0v/dy and v = 99 /0x:

u(x, t)_w+//7z+< 8y R )G(x’—x)dx’dy’+

o [ (o ) o sy

However, the function G(x’ — x) = G(x — x’) is symmetric in x" and x.
Hence, the above can equally-well be written

0 0
u(x,t) =wy //R+ <8y” _8x’> G(x' — x)dx'dy’+

8 8 / / /
w//R <8y” _6x’> G(x' —x)dx'dy’.
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Vorticity interfaces

Green's theorem (Stokes' theorem in the plane) tells us

J2-5)- [rarsew

for (almost) any functions P(x’,y’) and Q(x’,y’). Here the contour C is
traversed so that R is always on its left.

Therefore, taking P = G(x’ — x) and Q = 0 for u, and taking P = 0 and
Q = G(x’ — x) for v, we have

u(x,t) = —Aw/ G(x' — x)dx’,
C

a remarkably compact expression! The jump in vorticity Aw arises because
C is traversed in opposite directions in the two regions.
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Vorticity interfaces

The dynamics cannot depend on fluid particles in the regions outside C,
since these particles can be exchanged arbitrarily with no effect on the
velocity field w.

= Therefore, the dynamics is entirely dependent on C.

We can deduce how C evolves by evaluating u on C and equating this to
the material derivative of a particle on C:

dx

i —Aw/cG(x’—x)dx'.

This is a self-contained equation for the evolution of C.

For 2D planar flow, this is known as ‘Contour Dynamics' (Zabusky,
Hughes & Roberts 1979), and in Plasma Physics, it is known as the
‘Water Bag Model’ (Berk & Roberts 1965).
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V-states for the Euler equations

Dritschel (1985) found co-rotating multiple-vortex states for m = 2 to 8
vortices, generalising the earlier work of Saffman & Szeto (1980) for
m = 2 only.

@ | [@
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V-states for the Euler equations

Love (1893) examined the stability of the ellipse and found a sequence of
instabilities, starting with an m = 3 mode at aspect ratio A = 1/3, then
m =4 at A = 0.215. etc.
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V-states for the Euler equations

Kamm (1987) and Cerretelli and Williamson (2003) found new V-states
bifurcating from the elliptical solutions at the points of marginal stability.
From Luzzatto-Fegiz and Williamson (2010):
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V-states for the quasi-geostrophic shallow-water equations

An important geophysical fluid dynamics generalisation is to consider the
quasi-geostrophic approximation of the shallow-water equations. J

This system looks similar to the 2D Euler equations except for the
inversion relation between v and g, here the ‘potential vorticity’ (PV):

V2 — P = ()
u=vVty

where v =1/Lp and Lp is the Rossby deformation length controlling the
elasticity of the free surface.
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Contour Dynamics

For a vortex patch, the quasi-geostrophic equations may also be reduced
to Contour Dynamics:

dx Aq

e = 00 = 57 f Kofalx —x)ax ®

where Kp(r) is the modified Bessel function of order 0.

Again, when both x € C and x’ € C, (6) is a closed system of equations
for the evolution of C.

V-states are steadily-rotating or steadily-translating solutions of (6).

Polvani, Zabusky and Flierl (1989) found V-states for both one and two
vortices (also in one or two layers).
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Two-fold symmetric V-states

Plotka and Dritschel (2010) extended the single-vortex steady states.

Figure 3. Selected equilibrium contour shapes for y=0.5 (left), 3.0 (middle) and 8.0 (right). In each frame,
we show the equilibrium contours for 2 =0.5, for the aspect ratio A, at marginal stability, and for the smallest
aspect ratio attainable 4. The plot window is the rectangle |x| < 2.2, |y[<1.18.

<
S

Lind =002

Figure 4. Comparison of the aspect ratio A and the elliptical aspect ratio .. obtained from the second
spatial moments, [ dxdy of the vortex patch. The equilibrium families y 2, 5and 10
are shown by thin fines, the family y=0.02 by a bold line and the barotropic Kirchhoff family =0 by the
dashed line. The curve for y =10 displays the most distortion for small 4. On the left, we see a zoom of the
figure on the right.
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Two-fold symmetric V-states

Plotka and Dritschel (2010) observed a continuous variation in the steady
states from a near elliptical form to a dumbbell shape, even for v < 1.

One might expect steady states near the Euler ellipses for smaller aspect
ratio, but none were found.

We (Dritschel, Hmidi & Renault, Arch. Rat. Mech. Anal. 231(3), 2019)
suspected that these steady states might exist but they are inaccessible
from the circular state — i.e. they no longer lie on the same solution
branch.

To access this distinct branch, it was necessary to develop a more
sophisticated method to compute steady states. J
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Two-fold symmetric V-states: numerical method

The method uses a Newton iteration of the fully linearised equations about
a guess for the steady state.

The linearisation itself makes use of the ‘travel-time coordinate’ ¥ = Q,t
formulated in Dritschel (1995), and first implemented by Luzzatto-Fegiz
and Williamson (2010) for computing steady states.

€, is the particle rotation frequency.

A correction for the vortex boundary shape (x, y) is found using

nyw» new Xy

XMW — oy .y =y - —
x5+ y5 x5+ ¥

— this is a normal perturbation to the previous boundary shape. Note: 7
has units of area.
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Two-fold symmetric V-states: numerical method

The quantity 7 is determined from

2w
Q)+ [ ) G(Ie() = X))V = € = () + 3202 + )

where

e Q, =21/ § ds/|ul is the particle rotation frequency around the vortex
boundary,

e Aqg (= 1) is the jump in potential vorticity crossing into the vortex,

e G(r) = —(27) " Ko(7r) is the Green function for the Helmholtz
inversion operator,

e C is an unimportant constant,

e (1) is the streamfunction on the vortex boundary from the previous
guess, and

e () is the specified equilibrium rotation rate.
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Two-fold symmetric V-states: numerical method

e Optionally, we can specify the vortex angular impulse
_ 2 2 _Ag 2 2
J= [ "+ y7)qlx,y)dxdy = == C(X +y°)(xdy — ydx)
and determine Q.

In practice, we add another equation, a linearisation of the above,
2 _
Ag /0 n(OA0) + ()] dd = J — J
where J is the angular impulse of the previous guess.

This enables us to determine a correction €’ to the rotation rate of the
previous guess.
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Two-fold symmetric V-states: numerical method

Numerically, integration is carried out by two-point Gaussian quadrature
taking care to remove and exactly evaluate the logarithmic singularity in G.

800 points, approximately equally spaced in ¢, are used to represent the
vortex boundary.

The perturbation function 7 is expanded as a truncated, symmetric Fourier
series:

N
n(9¥) = Z ap cos(2nv)
n=1

The resulting linear system is solved for the coefficients a, (and Q') via an
N x N matrix (or an (N + 1) x (N + 1) matrix). Here, we take N = 32,

An extra constant ag is added to 1 to ensure area conservation.
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Two-fold symmetric V-states: results

As suspected, at any finite v, a disconnected branch of solutions arises

near the m = 4 margin of stability for the Euler ellipses (v = 0).
0.18 : : : :

v =0.01

0.16f
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Two-fold symmetric V-states: results

However, the angular impulse J is not a particularly good statistic to see

this.
0.50

v =0.01 0.5

004 006 008 010 012 014 016
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Limiting vortex shapes and v for v = 0.01
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Larger v

At larger -y, a second disconnected branch of solutions arises near the
m = 6 margin of stability for the Euler ellipses! Are all disconnected?

0.18

v=0.1

0.16f
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It gets even more strange as <y increases further. Here v = 1.
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Three-fold symmetric V-states

For the three-fold symmetric V-states, originally found for the Euler
equations by Deem & Zabusky (1978), we (Dritschel, Hmidi & Renault,
2019) also suspected that there is another, separated branch of steady
states.

This was discovered first at large «y, then traced all the way back to v = 0-)

We employed the same numerical method as before, optionally varying the
vortex rotation rate Q or the vortex angular impulse J.

We had to interchangeably vary Q or J to trace the solution branches
around many folds and spirals.
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Three-fold symmetric V-states: equilibria

Multiple turning points occur: the branch spirals endless times as €, — 0.
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Here, the main solution branch for v = 2 is shown.
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Three-fold symmetric V-states: bifurcation
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Three-fold symmetric V-states: limiting states

e For smallerry, the limiting state is tFianguIar, as on the right.f Then the
three and four-vortex states are on a separate branch of solutions.

e For larger v, the limiting state is the three-vortex state, as in the middle.
Then the triangular and four-vortex states are on a separate branch of
solutions.
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Three-fold symmetric V-states: Euler limit
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Deem & Zabusky (1978)
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Three-fold symmetric V-states: Summary of all states
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Three-fold symmetric V-states: Evolution for v =0

t=10.0

t=10.0

t=100.0

[0

David Dritschel (St Andrews)

Vortex patch dynamics

November 2024




Three-fold symmetric V-states: Evolution for v = 3.6




Like-signed, unequal vortices: Co-rotating equilibria

Key parameters:

(1) Area ratio Ay/Aq,

(2) PV ratio q2/4q1,

(3) the inner gap 6, and

(4) the inverse Rossby deformation length +.
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Like-signed, unequal vortices: Co-rotating equilibria

0.0

—0.5

—2.0 -15 —1.0 —0.5 0.0 0.5 1.0 1.5

V-states having Ay/A1 = 0.5, g2/q1 =2 and v = 1.
Shown are 4 different values of the gap: § =1 (lightest grey),
0 = 0.8 (light grey), d = 0.6 (dark grey) and 6 = 0.4 (black).

From Jalali & Dritschel, GAFD 2018.
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Linear stability of vortex patch equilibria: The method

To maximally simplify the analysis, the boundary C of each equilibrium
vortex patch is parametrised by the travel-time coordinate ¥:

x = (x(9),y(9))

in the frame of reference rotating (or translating) with the equilibrium.

The travel-time coordinate ¥ = Q,t = 2t/ T where

ds
c 4

T =

is the orbital period, s is arc length, and u is the tangential velocity along
C. Similarly,
°ds
o O
given some chosen starting point at s = 0.

t(s) =
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Linear stability of vortex patch equilibria: The method

The optimal way to express disturbances is through
nY9
X3+ 75

_ <
Ly =7 —

x(¥,t) =x+ _ _
x§+y£

where a ¥ subscript denotes differentiation, and 7(4J, t) is the displacement
function (and has units of area) — Dritschel, JFM 293, 1995, Appendix B.

Then, expanding the Contour Dynamics equations to first order in 7,

on Q@n_@F

ot T Pay a9
21
F(0.t) = —Aq /O 0 £)G(x(a) — X(9)) da (7)

where G(x’ — x) is the Green function of the equation £ = q relating
streamfunction 1 to PV (or vorticity) q. The PV jump across C is Agq.
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Linear stability of vortex patch equilibria: The method

The Green function for various flow models:
e Planar 2D (Euler), V2 = w
= G(r) = (2m) " log(|r)
e QG shallow-water, V29 — % =g
= G(r) = —(2m) " Ko(7r)
@ 2D (Euler) on a cylinder (or x periodic), V2 = w
= G(x'—x,y' —y) = (47) Llog(cosh(y’ — y) — cos(x’ — x))
e 3D QG, Vi, =gq
= G(r) = —(4n|r|)~L.
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Linear stability of vortex patch equilibria: The method

The method trivially generalises to any number of contours Cy,
k=1, ..., nwith PV jumps Agqy:

On O OF

ot kg9, T a0,

FelWe. 1 ZAq, [ i 065069) - 5000y a0

Remarkably, it does not explicitly depend on the rotation rate € or
translation rate (U, V) of the equilibrium configuration.
Numerically, n, is expanded as a truncated Fourier series in ¥:

M
ne(g, t) = e 9t Z Am cos mi + By, sin mv

m=1

where ¢ is determined as an eigenvalue.
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Linear stability: results

Real and imaginary parts of o, respectively frequency and growth rate,
for VV-states having Ay/A; = 0.5, g2/g1 =2 and v = 1.

}

50 0.55 0.60

e Instability occurs below a critical gap, § = . =~ 0.536.
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Minimum gap to ensure linear stability
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Critical gap 6 = . below which equilibria are unstable, plotted versus the
vortex area fraction f4 = Az /(A1 + Az) and the vortex circulation fraction
fr =T2/(F1 4+ T2), for several values of .
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Nonlinear evolution of unstable V-states

v=10.5 vy=1 v=2 v=4
6 = 0.265 60 = 0.265 0 =0.255 60 =0.230
t=15 t=15 t=15 t=15
t=100 t=100 t=100

O O
\ | ’QQ

Here, A2/A; = 0.25 and g2/q1 = 2. [movies|
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Opposite-signed equilibria and linear stability

v =1, stable marginal stability
marginal & unstable v=0,05,1,24

Here, A2/A1 = 0.5 and q2/q1 = —0.5. (Jalali & Dritschel, GAFD 2020).
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Opposite-signed equilibria and linear stability

v =1, stable marginal stability
marginal & unstable v=0,05,1,24

Here, Ay/A1 = 1.5 and q2/q1 = —4/21. (Jalali & Dritschel, GAFD 2020).
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Nonlinear evolution

t=0 t
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e This is a near-limiting translating V-state with v = 4. [movies] e
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V-states in 3D quasi-geostrophic flows: Foundations

In the three-dimensional (3D) quasi-geostrophic (QG) model, for constant
Coriolis and buoyancy frequencies, f and N, the layerwise-2D flow
(u(x,y,z,t),v(x,y,zt)) is determined by

Py Py Y o oY o
B ay2+azz—vw—q and u——a&v_a,
where g is the QG potential vorticity (PV) and z has been by

N/f (typically > 1 in the atmosphere and oceans).
In the absence of forcing and diabatic effects, PV is materially conserved:

Dt Ot Ox dy
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V-states in 3D quasi-geostrophic flows: Origins in 2D

e Kirchhoff (1876) discovered an exact, steadily-rotating elliptical patch
of uniform vorticity w = wyp in an ideal 2D fluid.

h Q= 0 where A=

(1+)N)2

@ Moore & Saffman (1971) then Kida (1981) generalised this solution
to include a background straining and rotating flow — shape and
orientation generally time dependent.

@ Dritschel (1990) examined linear and nonlinear stability — rich!
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The ellipsoid

@ In the 3D Quasi-Geostrophic model of
geophysical flows, Zhmur & Shchepetkin (1991) ;]
and Meacham (1992) discovered the ellipsoidal
analogues of Kirchhoff’s elliptical vortex.

@ An ellipsoid x2/a® 4+ y?/b*> + 7% /c?> < 1
of uniform potential vorticity g = qq 2]
rotates steadily at a rate Q = goF (\, )

o
where A = b/a and u = c/Vab.
These solutions stem from work by
Maclaurin (1742) and Laplace (1784).

0.15

@ Dritschel, Scott & Reinaud (2005) examined
linear and nonlinear stability.

I3
n
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An historical survey

@ Miyazaki, Ueno & Shimonishi (1999) found steadily-rotating tilted
spheroidal vortices and investigated their linear stability.

@ Meacham, Pankratov, Shchepetkin & Zhmur (1994), Hashimoto,
Shimonishi & Miyazaki (1999) and McKiver & Dritschel (2003)
added a background straining flow (leads to time-dependent shape
variations).

e McKiver & Dritschel (2006) examined
the stability of all steady vortices
in a general straining flow.

@ Dritschel, McKiver & Reinaud (2004)
developed the Ellipsoidal Model.

@ etc...!
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Contour Dynamics

The 3D QG model has a Contour Dynamics formulation in R3.
R IR TR TR TR TR T S SN P S SR P S SP SP S

Consider a volume V bounded by
contours C(z) at each height z.
Let g = Ag (uniform PV) inside V
and g = 0 outside.

Using the Green function —1/(4x|x" — x|) for Laplace’s operator in 3D,

we have A A 4y
(u(x, t), v(x, t)) = "/dz'j{ (dx', dy’)
47T C(zl

) |x" — x|

where x = (x, y, z) (Dritschel, JFM 455 (2002), Appendix A).

This follows because the Green function is symmetric in x and x’.
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Contour Dynamics

In the numerical algorithm, the total height spanned by V is discretized
into n layers of equal thickness, Az. Over each layer, (x,y) € C is taken
to be independent of z.

Then, the z integral over each layer can be performed exactly. Evaluating
it in the middle of each layer, at z=2; (j =1, ,..., n) leads to

dx; dy;
(S 5) = o Z 7{, Nie = A ) (@, dy})
where
1
Aﬁ:log[(p2+02)2+a], a:|2j—2k]:|:%Az

and p? = (xj — x; )2 + (y; — v )? — all with O(Az?) error.
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Like and opposite-signed V-states in 3D QG

Az./H=0 Az./H=1/4 Az /H=1/2 Az./H=3/4

From Reinaud & Dritschel JFM 848 (2018) and JFM 971 (2023).
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Multi-polar (like-signed) V-states in 3D QG

Top view Side view

From Reinaud AIP Advances 12 (2022).
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Multi-polar (like-signed) V-states in 3D QG

Top view Side view

From Reinaud AIP Advances 12 (2022).
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Nonlinear evolution

(@) 6 (b) 6T
4r 1 4r 1
2 1 2 1
or 1 or 1
—2r 1 -2 1
—4r 1 -4 1
6 —4-20246 6 420246

FIGURE 7. Evolution of a uniform-PV torus with Ry/ro=7.2. Top view of the bounding
contours at r=0, 26, 129 and 408.

FIGURE 8. (Colour online) Orthographic view of the PV field at an angle of 60° from the
vertical for the torus with Ry/ro=7.2 at t=100. The horizontal lines indicate the vertical
extent of the domain of view, here |z| <0.5. Flow structures seen through the lower front
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Nonlinear evolution

Left: JUNO image of the south pole of Jupiter from Adriani et al, Nature
555 (2018).

Right: Contour Surgery simulation from Reinaud & Dritschel, JFM 863
(2019). [movies|
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Conclusions: part 1 of 2

Vortex patches in many flow models are governed by a reduced dynamical
system, ‘Contour Dynamics': only vorticity interfaces matter.

Such flow models include — but are not limited to — 2D planar (Euler),
shallow-water quasi-geostrophic, and 3D quasi-geostrophic.

In the shallow-water quasi-geostrophic model, at finite Rossby deformation
length Lp, the Euler elliptical branch of steady-state solutions separates
near the m = 4 marginal stability of the Euler ellipses (A = 0.215).

In fact separations appear to occur at all even higher-order bifurcations
(m=6, 8, 10, etc.).

v

David Dritschel (St Andrews) Vortex patch dynamics November 2024 59 /60



Conclusions: part 2 of 2

A new, separated branch of solutions has been discovered for the
three-fold symmetric V-states. The limiting states of this new branch and
the one starting from circular states change around v =1/Lp = 3.5.

There are a plethora of multiply-connected V-states, e.g. both like-signed
and opposite-signed vortex pairs. They are stable unless sufficiently close
together.

V-states of the 3D quasi-geostrophic model resemble patterns observed at
the poles of the gas giant planets. In particular, patterns of 5 or 8 vortices
exhibit robust stability.
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