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The Great Red Spot

David Dritschel (University of St Andrews) Fluid/vortex dynamics and model building November 2024 3 / 70



Synthetic (simulated) spots
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A cloud
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A synthetic (simulated) cloud

Rendered image by Domantas Dilys, University of Leeds
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In art

Seascape at Naruto, Awa (‘Awa Naruto no Fuukei’ in Japanese),
by Andô Hiroshige (1857).

Image courtesy of Professor Mitsu Funakoshi, Kyoto University.
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Awa Province: Wind and Waves at the Whirlpool of Naruto
by Andô Hiroshige (1855).
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What is a fluid?

Air and water are common examples of a fluid
Fundamentally, both are made up of a collection
of rapidly-moving molecules at very small scales.

In fact temperature is defined to be proportional
to the mean kinetic energy of the molecules.

The key point is that, while typically molecules are separated by large
empty spaces, they are so numerous (∼ 1020 per cm3) that it is practically
impossible to follow each molecule to deduce their collective motion.

... The fastest computer in the world could not simulate the motion of this
many molecules!
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Fluid “motion”

Fluid dynamics is concerned with the mean motion of these molecules
over tiny volumes, indeed as we take the volumes to zero (here we become
mathematicians!).

Of course, meaningful averages can be taken only if the tiny volumes still
contain a large number of molecules. A cubic micrometer µm3 of air still
contains 2.7× 1010 molecules....

Molecules move at high speeds in different, almost random directions.
When you average these speeds, there is a huge amount of cancellation.
That is, in the x direction, some molecules will have a positive speed while
others will have a negative one, and averaging over all the speeds leads to
a mean speed which is much less than the typical speed of each molecule.
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A (very) brief history

The mathematical basis of fluid dynamics was not formulated until the
mid 1700’s, in the pioneering work of Euler, Bernoulli, Navier, and Stokes.

The first complete set of equations was derived by Leonhard Euler in 1757,
in “Principes généraux du mouvement des fluides”. They take the form

Du
Dt

(=
∂u
∂t

+ (u · ∇)u) = −∇p

ρ
+ F

∇ · u = 0

— for uniform density ρ. Here F stands for external forces (e.g. gravity).

The first equation above is an expression of Newton’s famous law F = ma,
but for a continuum. What was truly radical was the inclusion of pressure
p, the force per unit area exerted by molecular collisions.
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Adding complexity ...

Real fluids have variable density ρ, though in some cases (like the oceans)
it varies only slightly (albeit with important consequences). Conservation
of mass generally requires

∂ρ

∂t
+∇ · (ρu) = 0 .

Moreover, real fluids are compressible (permit sound waves) yet can often
be usefully approximated as incompressible:

∇ · u = 0 ⇒ Dρ

Dt
= 0

— then density is materially conserved.

The governing equations for a compressible fluid are much more
complicated: they require an equation of state relating density, pressure
and temperature, and further equations for energy and entropy.
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Vorticity — the “spin” in a fluid

A century after Euler published his equations, Hermann von Helmholtz
derived his famous vortex theorems in 1858. These refer to the properties
of vorticity

ω = ∇× u

— a vector quantity that gives twice the local spin
of an infinitesimally small fluid volume.

This changes by s t r e t c h i n g and buoyancy effects.

The importance of vorticity is that it tends to be highly localised in fluid
flows. One can often readily identify “vortices” in naturally-occurring
flows.

They are, indeed, ubiquitous throughout the universe.
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Circulation and Potential Vorticity

A decade after Helmholtz published his vortex theorems, Lord Kelvin
derived ‘his’ circulation theorem. This states that the flux of vorticity
through any material surface,∫∫

S
ω · n̂ dS =

∮
C

u · dx ,

is constant in time for Euler’s equations.

C
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Beltrami and Material Vorticity

Now suppose that the material surface S is described by θ(x , t) = θ0,
a constant, i.e.

Dθ

Dt
= 0

(material points generally move on this surface, but retain θ(x , t) = θ0).

Shrinking C to a point and using n̂ = ∇θ/|∇θ|, Kelvin’s theorem implies

D(ω · ∇θ)

Dt
= 0

pointwise. Alternatively, this may be derived directly from the vorticity
equation,

∂ω

∂t
+ u · ∇ω = ω · ∇u .
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Beltrami and Material Vorticity

Euler’s equations have the property that the curl of the fluid acceleration
a = Du/Dt is identically zero, i.e.

∇× a = 0 .

Beltrami (1871) proved that, under this condition, the quantity

ϖ = ω · ∇θ

is materially conserved on a θ surface (where Dθ/Dt = 0). This quantity,
ϖ, is Beltrami’s material vorticity — see Á. Viúdez, “The Relation
between Beltrami’s Material Vorticity and Rossby-Ertel’s Potential
Vorticity”, J. Atmos. Sci. 58 (2001).

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄
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Potential Vorticity

However, Euler’s equations don’t apply to atmospheric and oceanic fluid
dynamics, where density ρ varies and where the fluid in not strictly
incompressible.

Nonetheless, Beltrami’s theorem does apply whenever

∇θ · (∇× a) = 0 ,

which does commonly occur in atmospheric and oceanic fluid dynamics
(ignorning diabatic and frictional processes).

Consider incompressible flow (for which ∇ · u = 0 and Dρ/Dt = 0) having
variable density ρ. In a rotating frame of reference, with vector rotation Ω,
the velocity field satisfies

Du
Dt

+ 2Ω× u +Ω×Ω× x = −∇p

ρ
. (1)
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Potential Vorticity

The left-hand side of this equation is the acceleration a in the absolute
(inertial) reference frame. Hence,

∇× a =
∇ρ×∇p

ρ2
. (2)

It therefore follows that ∇ρ · (∇× a) = 0. Moreover, ρ = constant is a
material surface, on account of Dρ/Dt = 0.

Hence, by Beltrami’s theorem, the quantity

q = ωa · ∇ρ

is materially conserved: Dq/Dt = 0. Here, ωa = ω + 2Ω is the absolute
vorticity. More generally, q = ωa · ∇F (ρ) is materially conserved for any
functional F .
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Potential Vorticity

The quantity q is known as potential vorticity , later (re)derived by Ertel
(1942), generalising a result of Rossby (1940).

In a compressible atmosphere, ρ is no longer conserved, however the
entropy, or (equivalently) potential temperature θ = T (pref/p)

2/5 is.
In this case,

q =
ωa · ∇θ

ρ

is materially conserved — again by Beltrami’s theorem.

The concept of potential vorticity (PV) is hugely important in
atmospheric and ocean dynamics, see Hoskins, McIntyre & Robertson,
Quart. J. Roy. Meteorol. Soc. (1985).
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and potential temperature, which holds approximately when advective processes dominate frictional and 
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temperatures, geopotential heights, static stabilities, and vertical velocities, under a suitable balance condition. 
The statement that vertical velocities can be deduced is related to the well-known omega equation principle, 
and depends on having sufficient information about diabatic and frictional processes. Quasi-geostrophic, semi- 
geostrophic, and ‘nonlinear normal mode initialization’ realizations of the balance condition are discussed. An 
important constraint on the mass-weighted integral of PV over a material volume and on its possible diabatic 
and frictional change is noted. 

Some basic examples are given, both from operational weather analyses and from idealized theoretical 
models, to illustrate the insights that can be gained from this approach and to indicate its relation to classical 
synoptic and air-mass concepts. Included are discussions of (a) the structure, origin and persistence of cutoff 
cyclones and blocking anticyclones, (b) the physical mechanisms of Rossby wave propagation, baroclinic 
instability, and barotropic instability, and (c) the spatially and temporally nonuniform way in which such waves 
and instabilities may become strongly nonlinear, as in an occluding cyclone or in the formation of an upper air 
shear line. Connections with principles derived from synoptic experience are indicated, such as the ‘PVA rule’ 
concerning positive vorticity advection on upper air charts, and the role of disturbances of upper air origin, in 
combination with low-level warm advection, in triggering latent heat release to produce explosive cyclonic 
development. In all cases it is found that time sequences of isentropic potential vorticity and surface potential 
temperature charts-which succinctly summarize the combined effects of vorticity advection, thermal advection, 
and vertical motion without requiring explicit knowledge of the vertical motion field-lead to a very clear and 
complete picture of the dynamics. This picture is remarkably simple in many cases of real meteorological 
interest. It involves, in principle, no sacrifices in quantitative accuracy beyond what is inherent in the concept 
of balance, as used for instance in the initialization of numerical weather forecasts. 
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The stratospheric polar vortex.

Here the analysed (isentropic) PV
is shown at successive days in
September 1982.

The edge of the polar vortex
is what we identify as the
“jet stream”.
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Figure 5. Sectors of the 300 K IPV maps for the period 2C-25 September 1982. The region covered is from 
40"N to the north pole and from 120"W to 0"W with the 60"W meridian central. The contour interval is 0.5 PV 
units and the region 1.5-2 units is blacked in. Also shown are the horizontal velocity vectors on this surface, 

scaled as in Fig. 2. 

the present data in association with the feature D" in Fig. 2(a). We shall see in section 3 

that such a structure, which all the above-mentioned cases share qualitatively, is precisely 

that expected theoretically for the flow structure associated with an upper air high-PV 
anomaly like that originally postulated by Kleinschmidt . Moreover such gross differences 

as there are between tropical and high latitude cases are qualitatively consistent with 
those predicted theoretically from the different values of the Coriolis parameter (Eqs. 

(33)  below). 
Finer details such as the shallow tongues seen in Fig. 9(b), whose presence or absence 

may be difficult to determine observationally, are probably explicable, when they occur, 
in terms of the detailed spatial structure of the PV anomaly and its formation by competing 
processes such as different amounts of advection along different isentropic surfaces, and 
non-conservative effects such as clear air turbulence (e.g. Staley 1960; Shapiro 1978, 
1980; Holopainen and Rontu 1981), which may tend to modify such tongues locally (see 
section 7). 

( d )  A minor blocking episode 

The other development to be singled out for discussion is that of a blocking 
anticyclone, again in the North Atlantic. A portion of each 330 K IPV map for the period 
30 September-7 October is shown in Fig. 11. Note that this period follows on from that 

In the Earth’s stratosphere,
contours of PV are virtually
material contours, meaning
they carry the same fluid particles
at all times (if q is conserved).

PV is not passive, but directly
feeds back into the flow and largely
controls the flow’s dynamical and
thermodynamical structure through
“PV inversion”.
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Rossby and inertia–gravity waves

In general, waves rely an underlying restoring mechanism (a medium
through which they can propagate) for their existence.

The most important waves (i.e. most energetic) in geophysical flows are
Rossby waves and inertia–gravity waves.

Rossby waves propagate on the variable planetary vorticity associated with
planetary rotation.

David Dritschel (University of St Andrews) Fluid/vortex dynamics and model building November 2024 23 / 70



Inertia–gravity waves

Inertia–gravity waves propagate on both vortex lines (associated with
background rotation) and variations in mean density.

• Rotational waves propagating on vortex lines alone are called inertial
waves.

• Density waves propagating on variations in the mean density alone are
called internal waves.
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Balance and PV inversion

How can we exploit PV conservation? We shall see that PV is the key field
associated with the underlying, slowly evolving, balanced flow.

PV is not enough to determine all the dynamical and thermodynamical
fields. E.g. in the incompressible equations, there are four “prognostic”
equations (with time derivatives): those for u and ρ.

The condition ∇ · u = 0 eliminates one, but the three remaining
prognostic equations cannot be replaced simply by Dq/Dt = 0.

What pair of fields should one evolve alongside PV?

Can we exploit any approximate relationships between fields to reduce the
equations to PV conservation plus diagnostic relations? (Yes!)

David Dritschel (University of St Andrews) Fluid/vortex dynamics and model building November 2024 25 / 70



The barotropic model: two-dimensional (2D) flow

To illustrate, we start with the simplest flow relevant to large-scale
atmospheric and oceanic dynamics: 2D flow on the plane governed by
Euler’s equations.

Since w = 0 and ∂F/∂t = 0 for any field F (x , y , t), the vorticity equation
reduces to scalar conservation of vertical vorticity ζ:

Dζ

Dt
= 0

(This also follows directly from Kelvin’s circulation theorem).

The definition ω = (ξ, η, ζ) = ∇× u, and ∇ · u = 0, together imply

∂v

∂x
− ∂u

∂y
= ζ and

∂u

∂x
+
∂v

∂y
= 0
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Two-dimensional (barotropic) flow

One may thus “invert” ζ by introducing a streamfunction ψ in terms of
which

u = −∂ψ
∂y

and v =
∂ψ

∂x
.

It follows that
∇2ψ = ζ .

Hence, given ζ(x , y , t) (our materially-conserved PV), the flow field
u(x , y , t) = (u, v) is found by inverting the Laplacian ∇2 above and
differentiation.

With u thus found, ζ can be propagated to the next instant of time, and
so on. This is a fully self-contained system — already a balanced model.

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄
We’ll see that this is closely related to the important Quasi-Geostrophic
balance model in Geophysical Fluid Dynamics (GFD).
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Two-dimensional (barotropic) flow

Appropriate efficient numerical methods will be discussed later.

Suffice it to say, 2D flow is capable of exhibiting extraordinary complexity:

Vortices spontaneously arise and grow through merger (on average).

The energy distribution across scales — the spectrum — cascades to large
scales, exactly opposite to what is found in 3D!

See Dritschel et al in J. Fluid Mech. 640, 215–233 (2009).
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Turbulence and self-organisation

Collectively, geophysical fluids display a remarkable degree of organisation.

Turbulence is not simply chaotic motion; it is not without structure.
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Order out of chaos ... or no chaos?
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How do we start modelling something this complex?

Modelling is much more than (approximately) solving
the governing mathematical equations on large computers.

This is necessary and important for some applications
(e.g. weather forecasting), but it is only part of the story.

For a mathematician, a model represents a simplification of a complex
process, a simplification that leads to a deeper and clearer understanding.

The idea is to retain the key ingredients involved and remove those which
make analysis very difficult or impossible.
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Modelling in action

In fact, we may be unaware that we are modelling all the time! It is a
deeply psychological concept.

We naturally gloss over detail and pick out key features.
⋄ ⋄ ⋄ We are programmed to do this. ⋄ ⋄ ⋄

Mathematicians and scientists generally formalise this in their “research”.
We use approximate equations to describe weather, ignoring effects (e.g.
quantum) which are either negligible or obstructive.

Simpler models enable us to identify what essentially controls a given
process — like the growth of a cloud.
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Recipé for geophysical fluid dynamics

The extra and essential ingredients needed to create observed patterns in
planetary atmospheres and oceans are rotation, stratification and
forced thermal variations, e.g. from the sun.

×.Ω.

Ω.

0

x

x

z

ρ

• Stratification leads to layering — predominantly horizontal motions.

• Rotation leads to vertical coherence — causing different vertical layers
to move together.

• Thermal variations cause baroclinic instability and convection, leading to
coherent patterns (jets, vortices, fronts) in a turbulent ‘sea’.

David Dritschel (University of St Andrews) Fluid/vortex dynamics and model building November 2024 33 / 70



Order out of chaos

The process of order formation is generic in geophysical flows.

It arises from the inhomogeneous mixing of an important dynamical tracer,
potential vorticity (PV), closely related to Kelvin’s circulation.

(a) t = 0 (b) t = 20 (c) t = 200

Here, jets and vortices form in a single-layer quasi-geostrophic flow. Shown
is the evolution of the PV field (from Scott & Dritschel, in Zonal Jets,
Cambridge University Press, 2019).
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How do we start modelling?

We reduce more complicated models (there is no complete model!) to
simpler, more manageable forms by neglecting terms (or whole equations).
This is often guided by scale analysis.

In the scaled, dimension-less equations, one or more small parameters
appear. One may then derive a reduced model through an asymptotic
expansion.

Alternatively, one may make an ansatz that a priori some condition holds,
e.g. there is a symmetry like the flow is independent of one spatial
coordinate.

Both techniques are illustrated next.
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From shallow water to quasi-geostrophy

A very common model used to study geophysical flows is the shallow-water
model. In its simplest form, it describes the motion of a homogeneous
(uniform density) fluid with a free surface, held down by gravity:

h.

p = pa .

Ω.

Here, we include the background (planetary) rotation Ω = f /2.

The shallow-water (SW) model is predicated upon the hydrostatic
approximation, which states that the vertical acceleration Dw/Dt is
negligible compared with gravity g . This leads to a balance between the
vertical pressure gradient and gravity:

−1

ρ

∂p

∂z
= g

— a result going back to Archimedes (287–212 BC)!
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From shallow water to quasi-geostrophy

Consistently, the SW model assumes that the horizontal flow (u, v) in
(x , y) is independent of z . This leads directly to

Du

Dt
− fv = −g

∂h

∂x
,

Dv

Dt
+ fu = −g

∂h

∂y
,

∂h

∂t
+∇ · (hu) = 0

from the three-dimensional (3D) parent equations. Here, f = 2Ω is the
Coriolis frequency.

Notably, this is a set of coupled nonlinear PDEs, but only in 3 variables
(u, v , h) depending on (x , y , t). Above u = (u, v) is the horizontal (2D)
velocity field and ∇· is the 2D divergence operator.

The vertical velocity w is a linear function of z but is purely diagnostic:

w = −z ∇ · u
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From shallow water to quasi-geostrophy

To derive the quasi-geostrophic (QG) model, we perform a scale analysis
to reveal small parameters.

First of all, mass conservation means that the mean height H = ⟨h⟩ is
conserved. We consider therefore the displacement η = h − H.

Let L, D, U and T be characteristic length, displacement, velocity and
time scales. Anticipate/assume that the time scale for the flow evolution is
the advective one:

T =
L

U
.

This means that ∂/∂t ∼ u · ∇.

Begin by rewriting the equations using dimensionless variables:

t̃ = t/T , x̃ = x/L , ũ = u/U and η̃ = η/D
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From shallow water to quasi-geostrophy

U

fL

(
∂ũ

∂ t̃
+ ũ · ∇̃ũ

)
− ṽ = − gD

fUL

∂η̃

∂x̃
,

U

fL

(
∂ṽ

∂ t̃
+ ũ · ∇̃ṽ

)
+ ũ = − gD

fUL

∂η̃

∂ỹ
,

D

H

(
∂η̃

∂ t̃
+ ũ · ∇̃η̃

)
+ ∇̃ · ũ = 0.

Here the first two equations have been scaled by fU, and the third by
H/T = HU/L.

All quantities with tildes are assumed to be O(1).

Three dimensionless parameter groups appear:

U

fL
,

gD

fUL
and

D

H
.
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From shallow water to quasi-geostrophy

The QG model assumes that the first and the third are small:

Ro ≡ U

fL
≪ 1 and α ≡ D

H
≪ 1 .

The first is called the “Rossby number”, Ro. When Ro ≪ 1, the dominant
horizontal balance is between the Coriolis force and the pressure gradient,
known as “geostrophic balance”.

When α≪ 1, free surface displacements η are small compared to H.

Together, both consistently show that — to leading order — the flow is
non-divergent:

∇̃ · ũ = 0.

The horizontal equations then reduce to (simply)

ũ = −∂ψ̃
∂ỹ

and ṽ =
∂ψ̃

∂x̃
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From shallow water to quasi-geostrophy

where

ψ̃ ≡ gD

fUL
η̃

is a dimensionless streamfunction. Hence, the final parameter group

gD

fUL

must be O(1) for consistency. Without loss of generality, we can take this
to be 1, and use this to define D = fUL/g . Then α≪ 1 means

α =
D

H
=

fUL

gH
=

U2

gH

fL

U
=

Fr2

Ro
≪ 1 ⇒ Fr2 ≪ Ro ≪ 1

where

Fr ≡ U√
gH

is called the “Froude number”.
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From shallow water to quasi-geostrophy

When Fr ≪ 1, flow speeds U are small compared to surface gravity wave
speeds c =

√
gH.

The final step in deriving the QG model is to include the next order
corrections to ũ — the ageostrophic velocity field in the equation for η̃.

We proceed by a Rossby number expansion (assuming Fr ∼ Ro),

ũ = ũ0 + Ro ũ1 + ..., η̃ = η̃0 + Ro η̃1 + ...

At leading order, O(Ro0),

ũ0 = −∂η̃0
∂ỹ

and ṽ0 =
∂η̃0
∂x̃

but η0 is as yet undetermined.
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From shallow water to quasi-geostrophy

At first order, O(Ro1), the ũ & ṽ equations give

ṽ1 =
∂η̃1
∂x̃

+
∂ũ0
∂ t̃

+ ũ0 · ∇̃ũ0

and

ũ1 = −∂η̃1
∂ỹ

− ∂ṽ0
∂ t̃

− ũ0 · ∇̃ṽ0.

while the η̃ equation gives

Fr2

Ro2

(
∂η̃0
∂ t̃

+ ũ0 · ∇̃η̃0

)
+ ∇̃ · ũ1 = 0.

For consistency, therefore, the ratio Fr/Ro must be O(1) or smaller.

Note that the first term involving η̃1 in both ũ1 and ṽ1 is non-divergent.
Hence ∇̃ · ũ1 only involves ũ0, not η̃1! ... A miracle occurs!
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From shallow water to quasi-geostrophy

Using a few vector calculus identities, together with ∇̃ · ũ0 = 0, we find

∇̃ · ũ1 =
∂ζ̃0
∂ t̃

+ ũ0 · ∇̃ζ̃0

where

ζ̃0 =
∂ṽ0
∂x̃

− ∂ũ0
∂ỹ

is the leading order vertical vorticity component. Defining

q̃0 ≡ ζ̃0 −
Fr2

Ro2
η̃0

then the η̃ equation reduces to

∂q̃0
∂ t̃

+ ũ0 · ∇̃q̃0 = 0

— i.e. material conservation of the scalar q̃0, the QG potential vorticity.
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From shallow water to quasi-geostrophy

Recall that the leading-order displacement η̃0 is equal to the

streamfunction ψ̃ introduced before:

η̃0 = ψ̃

(this comes from the leading-order geostrophic balance).

Hence, we may write the QG potential vorticity (PV for short) as

q̃0 = ∇̃2ψ̃ − Fr2

Ro2
ψ̃

where we have used ζ̃0 = ∇̃2ψ̃, again coming from geostrophic balance.

Restoring the definitions of Fr and Ro,

Fr2

Ro2
=

U2

gH

f 2L2

U2
=

f 2L2

gH
.
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From shallow water to quasi-geostrophy

Part of this parameter group involves a physical length scale

LD ≡
√
gH

f

called the “Rossby deformation length”. The constants g , H and f are all
physical — they are not characteristic values like L, D and U.

Hence, the PV can be re-written (again!) as

q̃0 = ∇̃2ψ̃ − L2

L2D
ψ̃

This is very important. It means that, given the PV field q̃0, one can find

ψ̃ by solving a (linear) Helmholtz equation.
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From shallow water to quasi-geostrophy

But there is more! Once ψ̃ is found, the velocity field is found by simple
differentiation,

ũ0 = −∂ψ̃
∂ỹ

and ṽ0 =
∂ψ̃

∂x̃

and this is all one needs to evolve the PV field:

∂q̃0
∂ t̃

+ ũ0 · ∇̃q̃0 = 0.

This closes the system of equations. Only one scalar evolution equation is
involved and moreover the velocity field is found by solving linear
equations — something called “PV inversion”.

The QG model is the simplest model in geophysical fluid dynamics.
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From shallow water to quasi-geostrophy

Restoring dimensions, the characteristic scales L, D and U disappear:

q = ∇2ψ − ψ

L2D
,

u = −∂ψ
∂y

and v =
∂ψ

∂x

together with ∂q

∂t
+ u · ∇q = 0.

This is the complete, dimensional, quasi-geostrophic model.

It uses the basic ingredients in geophysical fluid dynamics in the simplest
possible manner, leading to
• a single evolution equation for the slow material transport of PV, and
• linear inversion relations providing the flow field from the PV field.

David Dritschel (University of St Andrews) Fluid/vortex dynamics and model building November 2024 48 / 70



David Dritschel (University of St Andrews) Fluid/vortex dynamics and model building November 2024 49 / 70



The process of reduction

The QG model is certainly capable of exhibiting complex turbulent flow
evolution.

But what have we lost in the process of reduction? The “parent”
shallow-water model has 3 time derivatives for 3 prognostic variables
h, u and v . By contrast, the QG model has just one time derivative and
one prognostic variable, the PV.

The QG model filters the relatively
high frequency gravity waves, having
frequencies > f . What is left is the
low frequency evolution of PV.

The justification is that gravity waves
tend to be energetically weak
compared to the slow, ponderous evolution of PV.
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From 3D to shallow water

We now step back and consider the origin of the shallow-water model
itself. The “parent model” in this case is governed by the 3D Euler
equations for constant density but with a free surface at z = h(x , y , t).

The parent model is governed by the equations

Du
Dt

+ f ez × u = −∇P,
Dw

Dt
= −∂P

∂z
− g

∇ · u +
∂w

∂z
= 0

where P = p/ρ is a scaled pressure. Here u = (u, v) is the horizontal
velocity and w is the vertical velocity. ∇ is the 2D gradient operator.

Boundary conditions:

w = 0,
∂P

∂z
= −g at z = 0

w =
Dh

Dt
, P = constant (= 0) at z = h.
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From 3D to shallow water

It is convenient to separate P into a hydrostatic part, Ph = g(h − z), and
a remaining non-hydrostatic part, Pn = P − Ph:

⇒ ∂Pn

∂z
= 0 at z = 0, Pn = 0 at z = h.

The momentum equations then become

Du
Dt

+ f ez × u = −g∇h −∇Pn,
Dw

Dt
= −∂Pn

∂z
.

Taking the 3D divergence of the momentum equations and using
incompressibility provides a diagnostic equation for Pn:

∇2Pn +
∂2Pn

∂z2
= f ζ − g∇2h + 2Jxy (u, v) + 2Jyz(v ,w) + 2Jzx(w , u)

where ∇2 is the 2D Laplacian, ζ = ∂v/∂x − ∂u/∂y is the vertical
(relative) vorticity and J is the usual Jacobian operator.
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From 3D to shallow water

When the mean depth H is small compared to a characteristic horizontal
scale L, it is common to approximate the dynamics by the shallow-water
(SW) equations or the Serre/Green-Naghdi (GN) equations.

Both the SW and GN models assume that u is independent of z .

⇒ w = −δz where δ = ∇ · u.
Applying this at z = h, we have

Dh

Dt
= −δh ⇒ ∂h

∂t
+∇ · (hu) = 0,

the usual mass-continuity equation.

If we now vertically average the horizontal momentum equations we obtain

Du
Dt

+ f ez × u = −g∇h − 1

h
∇P̄n where P̄n ≡

∫ h

0
Pndz
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From 3D to shallow water

The SW model furthermore assumes Pn = 0 (hydrostatics), and this closes
the system in the primitive variables h, u and v :

Du

Dt
− fv = −g

∂h

∂x
,

Dv

Dt
+ fu = −g

∂h

∂y
,

∂h

∂t
+∇ · (hu) = 0 .

No asymptotic expansion in a small parameter is necessary!

Green & Naghdi (JFM, 1976) argue that such expansions do not
guarantee consistency, i.e. conservation of energy, etc.

In the present context, they show that one can derive a consistent model
even more accurate than shallow-water by not imposing the hydrostatic
approximation.

This “GN model” also requires P̄n. Let’s see how this is obtained.
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From 3D to better than shallow water

By not imposing the hydrostatic approximation, we need to satisfy the
complete vertical force balance:

Dw

Dt
= −∂Pn

∂z
.

But incompressibility gives w = −δz , where δ = ∇ · u is the horizontal
divergence. Since δ is independent of z , the above equation becomes

−Dδ

Dt
z − δw = −

(
Dδ

Dt
− δ2

)
z = −∂Pn

∂z

Now we simply integrate w.r.t. z to find

Pn = P0(x , y , t) +
1

2

(
Dδ

Dt
− δ2

)
z2

where P0 is determined from the boundary conditions satisfied by Pn.
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From 3D to better than shallow water

At z = 0, ∂Pn/∂z = 0 is automatically satisfied.

At z = h, the boundary condition is Pn = 0, and this determines P0:

P0 = −1

2

(
Dδ

Dt
− δ2

)
h2 so Pn = P0

(
1− z2

h2

)
.

For the reduced model, we need the layer-integrated non-hydrostatic
pressure,

P̄n =

∫ h

0
Pndz =

2

3
P0h ⇒ P̄n = −1

3

(
Dδ

Dt
− δ2

)
h3

In this form, the GN equations are implicit, since time derivatives appear
on both sides of the momentum equations.
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From 3D to better than shallow water

But an explicit model can be obtained from the divergence of the
horizontal momentum equations,

Du
Dt

+ f ez × u = −g∇h − 1

h
∇P̄n .

applying ∇· and a number of vector calculus identities, one finds

Dδ

Dt
− δ2 = γ̃ −∇ ·

(
1

h
∇P̄n

)
where

γ̃ ≡ f ζ − g∇2h + 2Jxy (u, v)− 2δ2

just depends on h, u and v — not their time derivatives.
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From 3D to better than shallow water

But previously we found, from the vertical force balance,

Dδ

Dt
− δ2 = − 3

h3
P̄n

(after a little re-arrangement).

Thus, upon eliminating Dδ/Dt − δ2, we obtain

∇ ·
(
1

h
∇P̄n

)
− 3

h3
P̄n = γ̃,

an explicit, linear, elliptic equation to determine P̄n from γ̃ and h.

This “Vertically-Averaged” (VA) model (D & Jalali, JFM A33, 2020) has a
similar form to the shallow-water (SW) model, only now with the addition
of non-hydrostatic pressure P̄n, a quantity diagnosed from h, u and v
at each instant of time.
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From 3D to better than shallow water

There are three prognostic equations: two for momentum

Du

Dt
− fv = −g

∂h

∂x
− 1

h

∂P̄n

∂x
,

Dv

Dt
+ fu = −g

∂h

∂y
− 1

h

∂P̄n

∂y

and one for mass
∂h

∂t
+∇ · (hu) = 0 ,

together with a diagnostic equation for “pressure”:

∇ ·
(
1

h
∇P̄n

)
− 3

h3
P̄n = γ̃ ≡ f ζ − g∇2h + 2Jxy (u, v)− 2δ2 .

Moreover, and unlike in the SW model, all conservation laws simply follow
from vertically-averaging those in the parent 3D model!
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From 3D to better than shallow water

This demonstrates consistency: all conservation laws are retained (see also
the variational formulation of Miles & Salmon, JFM 1985).

For example, total (kinetic plus potential) energy is

E = 1
2

∫ ∫
h
(
u2 + v2 + 1

3h
2δ2 + gh

)
where the red term comes from integrating w2 over z . It must be excluded
in the SW model.

Importantly, a material invariant of the 3D parent model, namely potential
vorticity, is also a material invariant of the reduced 2D model upon
vertical averaging:

Dq

Dt
= 0 where q =

ζ + f

h
+

1

3
Jxy (δ, h)

The red term must be excluded in the SW model.
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Potential vorticity in the VA model

True to its name, in the VA model the potential vorticity q(x , y , t) is the
vertically-averaged Beltrami-Rossby-Ertel potential vorticity Q(x , y , z , t):

Q = ωa · ∇θ ; ωa = ω + f ez

where ω = ∇× u, and θ is a materially-conserved field (Dθ/Dt = 0)
representing a coordinate surface (θ = 0 on z = 0, and θ = 1 on the free
surface z = h). Then

DQ

Dt
= 0

in the full 3D Euler equations (Beltrami, 1871).

Let z = z(x , y , θ, t) = θh be the height of the surface θ = constant. Then

θ =
z

h
and ∇θ =

ez

h
− z

∇h

h2
.
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Potential vorticity in the VA model

Also, since u and v are independent of z ,

ω =

(
∂w

∂y
, − ∂w

∂x
,
∂v

∂x
− ∂u

∂y

)
=

(
−z

∂δ

∂y
, z

∂δ

∂x
, ζ

)
using w = −δz (incompressibility).

Forming ωa · ∇θ, we find

Q =
ζ + f

h
+

z2

h2
Jxy (δ, h).

Vertically averaging, we obtain the Serre-GN (or VA) potential vorticity:

q =
ζ + f

h
+

1

3
Jxy (δ, h).
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Comparisons with the 3D model

What are the advantages of the VA (GN) model over the SW model?

First of all, gravity wave frequencies ω are more accurately captured:

0.0 0.5 1.0 1.5 2.0
kH

0.0
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ω
H
/c

SW

GN

3D

0 2 4 6 8
kH

0

2

4

6

8

ω
H
/c

SW

GN

3D

Dashed: f = 0 (non-rotating); Solid: f = 4π (rotating).

Here, k is wavenumber and we have taken c =
√
gH = 2π and H = 0.2.
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Evolution of ζ − f h̃ in 3D Euler with a free surface

t = 2 t = 10 t = 25

This field remains remarkably 2D, consistent with the SW and GN model
assumptions. (The images show |x | ≤ π and y ≤ 2 for all θ.)

Here and below, the mean depth H = 0.4.

The Rossby number ζmax/f varies from 0.57 to 0.71.

The Froude number (∥u∥/√gh)max varies from 0.17 to 0.23.
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Flow evolution in 3D — non-hydrostatic pressure Pn

t = 5 t = 15 t = 25

This field varies strongly in z (the full domain is shown). But this is
consistent with the boundary conditions

∂Pn

∂z
= 0 at z = 0, Pn = 0 at z = h.

One expects a quadratic dependence in z , consistent with the paraboloidal
structures seen.
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Flow evolution in 3D — horizontal divergence δ

t = 5 t = 15 t = 25

This field varies strongly in z . This is not consistent with the SW and GN
model assumptions.

At t = 0, δ (like u) is independent of z .

Prominent 3D variations develop in time.
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Comparisons with the 3D model

A second advantage of the VA model is that the vortical flow ζ
is much more accurately captured:
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ζ , t = 25, H = 0.4, n = 256

Here we compare the vertically-averaged 3D vertical vorticity ζ at a late
time t with that in the SW model. Maximum errors are around 10%.
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Comparisons with the 3D model

Again, but now comparing the 3D and VA models:
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Differences are 200 times smaller! There is a substantial gain in accuracy
by including non-hydrostatic effects.
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Summary

We have focused on models in geophysical fluid dynamics, relevant to
research in atmospheric and oceanic science.

We have showed how to developed “reduced” models from more
complete “parent” models.

Such models are important research tools, even if they cannot
forecast the weather!

We showed how to derive the quasi-geostrophic model from the
parent shallow-water one using an asymptotic expansion in a small
parameter (the Rossby number).

We also described an entirely different approach, making an ansatz
(avoiding an asymptotic expansion), to derive (an improved)
shallow-water model from the parent 3D Euler equations.

Next: Focus on reduced models.
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