形成中の星団での中間質量ブラックホール形成

Michiko Fujii (UTokyo)

Collaboration with Long Wang (Sun Yat-sen Univ.), Ataru Tanikawa (Fukui Pref. Univ.), Yutaka Hirai (Tohoku Univ.), Takayuki Saitoh (Kobe Univ.)

Intermediate-mass black holes (IMBHs)

- Stellar-mass BHs: <~100 Msun
 - BHs formed from normal massive stars
 - The maximum mass (~50 Msun) may depend on stellar evolution models
- Supermassive BHs: >~10⁵ Msun
 - Massive BHs located at the center of galaxies
 - MW hosts 4x10⁶ Msun SMBH
- Intermediate-mass BHs: between Stellar-mass and supermassive BHs $-> \sim 100 10^4$ Msun
 - Compared to the others, difficult to observe

Relatively reliable IMBH observations

- Gravitational wave: GW190521
 - Merger event with 85+66->142 Msun BH
- Low-luminosity AGNs
 - ~10⁵ Msun
- X-rays: HLX-1(Hyper-Luminous X-ray source 1)
 - ~20,000 Msun

IMBHs in globular cluster?

- Globular clusters: old and compact star clusters in the halo (10⁵⁻⁶ Msun)
- Some globular cluster may host 10³-10⁴ Msun IMBHs
 - But, not really convincing yet

Dynamical estimation of IMBH masses in globular clusters

Velocity dispersion

- If there is an IMBH, the velocity dispersion at the cluster center must be high
- Comparison between N-body simulations and observations
- Difficult to distinguish an IMBH from many BHs and NSs
- Stellar velocities
 - Häberle et al. (2024) found some high-velocity (>60 km/s) stars
 - Escape velocity of globular clusters <~ 20 km/s
 - Without IMBHs, these stars cannot be gravitationally bound

Two possible formation scenarios

- Runaway collisions of mainsequence stars
 - Globular clusters were initially dense
 - Once massive stars collide and form a more massive star, gravitational focusing accumulate stars and collisions repeat
- Multiple IMBH-BH mergers
 - Studied using N-body simulations of star clusters
 - Gravitational recoil kick ejects IMBHs before they reach 500 Msun (Holley-Bockelmann+2008, González Prieto+2022)

González Prieto+2022

Runaway collision simulation

- Globular cluster centers can reach extremely high densities
- Stars continuously collide and merge (runaway collisions)
- Very massive stars can form (Portegies Zwart & McMillan 2002)
- BUT, Mass loss may prevent the formation of IMBHs (Glebeek+09)
- These simulations started from a formed cluster (spherical, in equilibrium, gas free)

Star-cluster formation

- A) Stars form in collapsing molecular clouds
- B) Cluster formation in the deepest potential
- C) Gas expulsion and dynamical evolution reduce the cluster density
- The highest cluster density can be achieved during the formation phase
- To follow collisions, we need
 - Resolving individual stars
 - Treat star clusters as a collisional system

ASURA+BRIDGE code

Fujii+21ab, Hirai+21, PASJ

- Based on ASURA, N-body/SPH code initially developed for galaxy formation
 - SPH and N-body is coupled using BRIDGE scheme (Fujii et al. 2007)
- ASURA+BRIDGE can integrate stellar orbits without gravitational softening
 - We use **PeTar** (tree-based direct N-body code including binary treatments; Wang+2020)
- Probabilistic star formation similar to galaxy simulation
 - Density and temperature thresholds for star formation
 - Draw a stellar mass from a given IMF such as Kroupa IMF
 - No sink particles to reduce calculation cost
- HII region feedback using Strömgren radius
 - Set gas temperature within Strömgren radius to 10,000 K

ASURA+BRIDGE code

Fujii+21ab, Hirai+21, PASJ

- Collisions occur when two stars approach to the sum of their radii
 - We assumed perfect collision
- Stellar evolution using SSE (Tanikawa ver. 2020)
 - SSE give the radius, luminosity, and mass loss
 - Lost mass given to the surrounding gas particles
 - Mass loss rate for VMS (Vink 2018)

 $\log[\dot{m}_{\rm SW}/M_{\odot}\,{\rm yr}^{-1}] = -9.13 + 2.1\log[m/M_{\odot}] + 0.74\log[Z/Z_{\odot}],$

- SIRIUS Project
 - https://sites.google.com/g.ecc.u-tokyo.ac.jp/sirius-project/
- Simulations were performed using ATERUI-II, NAOJ
 - For the largest one, it took >3 month using 1000 CPU cores

Initial conditions and parameters

Homogeneous sphere with an initial turbulent velocity field

We picked up models forming a dense cluster from Fukushima+ 2021

We still don't know how such a massive and dense cloud forms

Table S1: Initial conditions. From the left: model name, metallicity (Z), initial cloud mass (M_g) , radius (R_g) , initial density (n_{ini}) , initial surface density (Σ_{ini}) , initial free-fall time $(t_{ff,ini})$, virial ratio (α_{vir}) , and the number of runs (N_{run}) .

Name	Z	$M_{\rm g}$	$R_{\rm g}$	$n_{\rm ini}$	$\Sigma_{\rm ini}$	$t_{\rm ff,ini}$	$\alpha_{\rm vir}$	$N_{\rm run}$
	(Z_{\odot})	(M_{\odot})	(pc)	(cm^{-3})	$(M_\odot{ m pc}^{-2}$)	(Myr)		
M1e5R5Z002v01	0.02	10^{5}	5	5600	1300	0.59	0.1	5
M1e6R10Z002v05	0.02	10^{6}	10	7000	3200	0.52	0.5	3
M1e6R10Z002v01	0.02	10^{6}	10	7000	3200	0.52	0.1	2
M1e6R17Z002v01	0.02	10^{6}	17	1400	1100	1.16	0.1	1
M1e5R5Z01v01	0.1	10^{5}	5	5600	1300	0.59	0.1	3
M3e5R7Z01v01	0.1	3×10^5	7.5	4500	1700	0.62	0.1	3

• Visualization based on the simulation result by Takaaki Takeda

Star cluster formation

X: Very massive star

- Star formation starts at around the initial free-fall time
- This cluster mass exceeded 10⁵ Msun (the most massive star-by-star cluster formation simulation)

Density distribution

• Extremely high density is realized

Runaway collision and following stellar evolution

- We stopped the simulation at 0.6 Myr
- The following mass loss is based on a stellar evolution model.

Stellar mass function in the cluster

 Massive stars preferentially join the collisions because of the mass segregation

Cluster-IMBH mass

Fujii+24, Science, arXiv:2406.06772

• 3-5% of cluster mass goes to VMS

• ~10⁴ Msun IMBH would be the upper limit

What's next?

- Pollution from very massive stars
 - Our code records the pollution fraction -> multiple population?
- Primordial binaries
 - We can put binaries instead of putting a star
- Star-by-star galaxy simulations
 - Dwarf size is possible
 - High-z galaxies?

Summary

- We for the first time performed N-body/SPH simulations of star-bystar globular-cluster formation with runaway collisions
 - Our code, ASURA+BRIDGE, can integrate stars without gravitational softening
- Runaway collision occurs during the formation phase of globular clusters
- ~10⁴ Msun VMSs formed via runaway collisions
- VMS-mass increase rate is 3-5 % of cluster-mass increase rate
- These VMSs will collapse to IMBH with >1000 Msun