Study of the superrotation of Titan's stratosphere using a general circulation model with simple radiative processes

> Motoki Sumi (WeatherNews Inc.), Shin-ichi Takehiro (Kyoto Univ.), Wataru Ohfuchi (Kobe Univ.), Hideko Nomura (NAOJ), Yuka Fujii (NAOJ)

> > March 29th, 2024

Workshop on Venus and other related atmospheres @ CPS, Kobe Univ.

Ref: Sumi, M. et al. (2022) Astrophys. J. **928**:149 https://doi.org/10.3847/1538-4357/ac54ab

Introduction

- Titan : satellite of Saturn
 - Planetary radius : 2500km
 - Rotation period : 16 Earth days
 - Surface pressure : 1.5 atm
- Characteristics of Titan's atmosphere
 - Superrotation wind over 100 m/s in the stratosphere
 - Haze layer at the bottom of the stratosphere

Mystery of superrotation

- Superrotation (SR) : acceleration is necessary to maintain SR
 - Meridional circulation + AM conservation
 - \Rightarrow subrotation at the top of the equator.
 - frictional resistance at the ground
- Gierasch mechanism (Gierasch, 1975) : a generation mechanism of SR
 - Efficient horizontal diffusion (AM transport by turbulence/waves)
 - Pumping up of AM from the planetary surface

- Many studies for Titan's atmosphere using GCM with several physical processes (e.g. Newman et al., 2011; Lebonnois et al., 2012; Lora et al., 2015)
 - Topography, seasonal variation, phase change of CH₄ etc.
 - Not clear the essential factor for SR
- Numerical experiments of GCM with simple setups are conducted
 - Investigate mechanisms for the generation/maintenance of SR in Titan's atmosphere
- Focus on effects of solar radiation absorption effect of the haze layer
 - Absorbs about 90% of solar radiation
 - Increases the temperature of the upper atmosphere
- How does the haze layer affect the generation and maintenance of SR states?
 - \Rightarrow Understanding the atmospheric dynamics of Earth-like planets

- DCPAM : GCM for planetary atmospheres developed by GFD-Dennou Club (Takahashi et al., 2018)
 - primitive system (hydrostatic approx.)
 - Dynamic processes in the horizontal direction are descretized by the spectral method using spherical harmonics
- A grey atmospheric radiation model with parameters to express greenhouse effect due to atmospheric gases and attenuation of sunlight due to haze (McKay et al., 1999)
- No methane phase change, topography, and seasonal cycle

Radiation model and haze effects

- Radiation model : two-parameters, γ , n
 - Grey atmosphere, two-stream approx.(solar and infrared)
 - Optical thickness proportional to the power of pressure : $\tau_L(p) = \tau_{\text{surf},L} (p/p_{\text{surf}})^n$
- γ : ratio of solar radiation absorption of the haze layer
- n : parameter for the height of the haze layer
- Suitable parameters for Titan : $(\gamma, n) = (0.44, 1.4)$

Radiative equilibrium temperature

- Resolution : Number of grids (lon. lat. height) = (32,16,55)
- ∇^6 -type hyper-diffusion Diffusion time for max. wavenumber component : 1 day
- Radiation parameters : 5 cases

	γ		
	0.0	0.44	1.0
	(No haze)		(Perfect haze)
n = 1.0 (higher haze layer)		0	
n = 1.4	0	Titan	0
n = 1.8 (lower haze layer)		0	

- Initial condition : no motion, radiative equilibrium temperature
- Analyze the states after 10^5 days time integration

Results : γ dependence ~ mean zonal flows

- The cases with n = 1.4
- $\gamma = 0.44$ and 1 : sunlight is absorbed at the haze layer
 - SR over 100m/s in the stratosphere
 - Weak counter wind just below the SR area
- $\gamma = 0$: no sunlight absorption by the haze, no SR in the stratosphere

Zonal mean zonal wind

γ dependence ~ zonal flow (lower altitudes)

- The cases with n = 1.4
- $\gamma = 0$: all sunlight reaches the planetary surface
 - Strong SR in the troposphere (~ 20m/s)

γ dependence : meridional circulation, radiative heating

- The cases with n = 1.4
- $\gamma = 0.44$ and 1 : sunlight is absorbed at the haze layer
 - $\bullet\,$ Stratosphere : heating at equator, cooling at polar region, 1-cell circulation
- $\gamma = 0$ and 0.44 : sunlight reaches at the ground
 - Troposphere : heating at equator, cooling at polar region, 1-cell circulation

Radiative heating and meridional circulation

n dependence : mean zonal flows

- The cases with $\gamma = 0.44$
- n increase : the haze layer lowered
 - SR region lowered
 - SR weakening

CONTOUR INTERVAL = 2.0×10^{1}

n dependence : zonal flow (lower altitudes)

- The cases with $\gamma = 0.44$
- n increase : the haze layer lowered
 - SR region lowered
 - SR weakening

Relative angular momentum

- $\gamma = 1$: AM ~ 0
 - AM redistribution inside the atmosphere
 - AM transport from bottom to top at an altitude of $10^3 \mbox{ Pa}$
- $\gamma = 0$: AM accumulation in the troposphere from solid planets
- $\gamma = 0.44$: similar to both $\gamma = 1$ and $\gamma = 0$

Wave analysis

• (1)

• TEM equations, longitudinal component of EOM

$$\frac{\partial \overline{u}}{\partial t} = \underbrace{-\frac{\overline{v}^*}{a\cos\varphi} \frac{\partial}{\partial\varphi} (\overline{u}\cos\varphi) - \overline{w}^* \frac{\partial \overline{u}}{\partial z} + f\overline{v}^*}_{(1)} + \underbrace{\overline{\mathcal{F}_{\lambda}}}_{(2)} + \underbrace{\frac{1}{\rho_0 a\cos\varphi} \nabla \cdot F}_{(2)}}_{(2)}$$

- $F = (0, F_{\varphi}, F_z)$: Eliassen-Palm flux (EP flux)
 - Indicator of wave activity
 - Inverse direction to the AM flux

$$\begin{split} F_{\varphi} &= \rho_0 a \cos \varphi \left(\frac{\partial \overline{u}}{\partial \overline{z}} \frac{\overline{v' \theta'}}{\partial \overline{a}} - \overline{u' v'} \right), \\ F_z &= \rho_0 a \cos \varphi \left(\left[f - \frac{\partial \overline{u} \cos \varphi}{\partial \varphi} \right] \frac{\overline{v' \theta'}}{a \cos \varphi} \right] \frac{\overline{v' \theta'}}{\frac{\partial \theta}{\partial z}} - \overline{u' w'} \right), \end{split}$$

Wave analysis : EP flux

- The cases with n = 1.4
- $\gamma = 0.44$, 1 : Sunlight absorption by the haze layer
 - Wave activity above 10^3 Pa height
 - AM transport from the poles to the equator

Wave analysis : acceleration distribution

- Comparison of acceleration around 800 Pa height (n = 1.4)
 - Around equator : acceleration by waves \Rightarrow generation/maintenance of SR
 - Poler region : AM transport by meridional circulation

Zonal wind acceleration

Wave analysis : UV cospectrum

- Analysis around 800 Pa height ($\gamma = 1.0, n = 1.4$)
- AM transport : waves with zonal wave number 1 dominates
- Angular velocity : slower than zonal flows ⇒ Rossby waves?

Wave analysis : wave structure

- Tilting of horizontal vortices : \Rightarrow equatorward AM transport
- Height and horizontal velocity : geostrophic balance \Rightarrow Rossby waves?
- Excitation mechanism : barotropic instability?

Linear stability analysis

- 2D barotropic rotating sphere model + hyper viscosity
- Basic field : zonal mean height field at 800Pa of the numerical result.
- No inflection point in the PV distribution

Linear stability analysis

- Unstable mode (left), wave analysis (right) : similar structure
 - zonal wavenumber m = 1, growth rate $\sigma = 2.5 \times 10^{-8} \text{ day}^{-1}$, frequency $\omega = 1.24 \times 10^{-8} \text{ day}^{-1}$.
 - No critical latitude!
- Unstable mode disappears when hyper viscosity is switched off

Summary

- SR in stratosphere : sunlight absorption by the haze layer
- Gierasch mechanism + no effect of the planetary surface
 - AM distribution inside the atmosphere
 - Counter flow below SR region
 - \Rightarrow consistent with observation? Wind collapse region?

Schematic figure of AM transport

Vertical distribution of mean zonal flows Obs (black dotted), num.exp.(red solid) (Sumi et al., 2022)

References

- Sumi, M., Takehiro, S., Ohfuchi, W., Nomura, H., Fujii, Y., Superrotation of Titan's Stratosphere Driven by the Radiative Heating of the Haze Layer. Astrophys. J. (2022), 928:149 (18pp) https://doi.org/10.3847/1538-4357/ac54ab
- Bird, M. K., Allison, M. Asmar, S. W., Atkinson, D. H. Avruch, I. M., Dutta-Roy, R., Dzierma, Y.. Edenhofer, P., Folkner, W. M., Gurvits, L. I., Johnston, D. V., Plettemeier, D., Pogrebenko, S. V., Preston, R A., Tyler, G, L., Nature (2005), **438**, 800–802.
- Fulchignoni, M., Ferri, F., Angrilli, F. et al., 2005: In situ measurements of the physical characteristics of Titan's environment. Nature, **438**, 785–791.
- Gierasch, P. J., Meridional circulation and the maintenance of the Venus atmospheric circulation. J. Atmos. Sci. (1975), **32**, 1038–1044.
- Newman, C. E., Lee, C., Lian, Y., Richardson, M. I., Toigo, A. D., Stratospheric superrotation in the TitanWRF model, Icarus (2011), **213**, 636–654.
- Lebonnois, S., Burgalat, J., Rannou, P., Charnay, B. Titan global climate model: A new 3-dimensional version of the IPSL Titan GCM, Icarus (2012), **218**, 707–722.
- Lora, J. M., Lunine, J. I., Russell, J. L., GCM simulations of Titan 's middle and lower atmosphere and comparison to observations, Icarus (2015), **250**, 516–528.
- Takahashi, Y. O., H. Kashimura, S. Takehiro, M. Ishiwatari, S. Noda, M. Odaka, T. Horinouchi, Y.-Y. Hayashi, DCPAM Devlopment Group, DCPAM: planetary atmosphere model, GFD Dennou Club (2018), http://www.gfd-dennou.org/library/dcpam/
- McKay, C. P., Lorenz, R. D., Lunine, J. I., Analytic Solutions for the Antigreenhouse Effect: Titan and the Early Earth. Icarus (1999), **137**, 56–61.