

One-dimensional Microphysics Model of Venusian Clouds from 40 to 100 km

Hiroki Karyu^{1,3} (hiroki.karyu.q4@dc.tohoku.ac.jp)

T. Kuroda¹, T. Imamura², N. Terada¹, A. C. Vandaele³, A. Mahieux³, S. Viscardy³

¹Tohoku University, ²University of Tokyo, ³BIRA/IASB

Published in Planetary Science journal (PSJ) https://doi.org/10.3847/PSJ/ad25f3

2024/03/28@CPS

Aerosols on Venus

Getting realistic aerosol profile is an important first step for the atmospheric modeling on Venus \rightarrow more complex modeling can follow after this step

Cloud structure evolves through the microphysical processes

Microphysics model can simulate the cloud structure based on the most fundamental processes

 \rightarrow minimal assumptions to calculate cloud profiles

Important for cloudy atmosphere like Venus

Venus Microphysics Modeling

Imamura & Hashimoto (2001)

CARMA Model (e.g., McGouldrick & Barth, 2023)

Previous models obtained observed cloud structures

Challenges in Microphysics Modeling 1/3

Eddy diffusion is chosen for better representation of the observed cloud structure and there are many standards

#

5

H₂O VMR tends to be overestimated around the cloud top

Observations

 H_2O VMR is ~1 ppm above the cloud top altitude (~70 km)

#

6

Fedorova+ (2008) Chamberlain+ (2020) Mahieux+ (2023)

Microphysics models overestimate the H₂O VMR by ~10 times at the cloud top \rightarrow related to eddy diffusion profiles chosen in the model?

Challenges in Microphysics Modeling 3/3

No simultaneous simulation of H₂O, H₂SO₄, and aerosol profiles above 80 km

#

SOIR observed haze layer and unexpected increase of trace gas VMR \rightarrow Aerosols may contirbute to the material transport from the middle to upper atmosphere, and chemistry of these altitudes (Zhang+ 2010)

Motivations

Challenges of microphysics modeling include

- 1. Choosing realistic eddy diffusion coefficient
- 2. Reproducing aerosol, H_2SO_4 , and H_2O distributions simultaneously up to 100 km altitude

- Eddy diffusion sensitivity study: We revisit the sensitivity of H_2O , H_2SO_4 , and aerosol profiles to eddy diffusion \rightarrow a new standard for cloud modeling
- Temperature sensitivity study: We study the effects of aerosol evaporation on H₂O and H₂SO₄ VMR variability to better understand SOIR observation with the obtained eddy diffusion coefficients

Method

1-D Cloud Microphysics Model

Governing equation for aerosol particles

$$\frac{\partial C(m, z, t)}{\partial t} = \frac{\partial}{\partial z} \left(K_{zz}(z) \ \rho(z) \ \frac{\partial}{\partial z} \left[\frac{C(m, z, t)}{\rho(z)} \right] \right)$$
$$- \frac{\partial}{\partial z} [w_{\text{sed}}(m, z) \ C(m, z, t)] - \frac{\partial}{\partial m} [G(m, z, t) \ C(m, z, t)]$$
$$+ \frac{1}{2} \int_{m_{\text{cn}}}^{m} K_{\text{coag}}(m', m - m') \ C(m', z, t) \ C(m - m', z, t) \ dm'$$
$$- C(m, z, t) \int_{m_{\text{cn}}}^{m_{\text{max}}} K_{\text{coag}}(m', m) \ C(m', z, t) \ dm',$$

Process of each term

1st: diffusion transport2nd: sedimentation3rd: condensation/evaporation4th, 5th: coagulation

C: cloud number density, K_{zz} : eddy diffusion coefficient, ρ : atmospheric density, w_{sed} : sedimentation velocity, *G*: particle growth rate, K_{coag} : coagulation efficiency

The model also calculates transport equation for H₂O and H₂SO₄ vapors

1-D Cloud Microphysics Model

11

Chemical Cycle Assumed in the Model

Assumed chemical cycle

$$\begin{cases} SO_2 + h\nu \rightarrow SO + O, \\ SO + h\nu \rightarrow S + O. \\ SO_2 + O + M \rightarrow SO_3 + M, \\ SO_3 + H_2O \rightarrow H_2SO_4. \end{cases}$$

 \rightarrow Net: $3SO_2 + 2H_2O \rightarrow S + 2H_2SO_4$.

Chemical cycle is not complete \rightarrow H₂O and H₂SO₄ vapor VMRs are set to constant values at the bottom boundary Altitude range: 40-100 km

Latitude: 45°

H₂SO₄ production / H₂O loss rate: Photochemical model results (Krasnopolsky 2012)

Boundary conditions: observational constraints

Altitude	CN Number Density	Droplet Number Density	H ₂ SO ₄ VMR	H ₂ O VMR
40 km (bottom) 100 km (top)	$\frac{4 \times 10^7 \text{ m}^{-3}}{\frac{df_{\text{CN}}}{dz}} = 0$	$\frac{0 \text{ m}^{-3}}{\frac{df_{\text{droplet}}}{dz}} = 0$	$\frac{4 \text{ ppm}}{df_{H2SO4}} = 0$	$\frac{30 \text{ ppm}}{df_{\text{H2O}}} = 0$

Note. The mixing ratio is expressed as f.

Initial conditions: same as the boundary conditions for all vertical grids

Eddy Diffusion Sensitivity Study

Assumed Transport Processes

- Mechanism of vertical transport in the planetary atmosphere is not well understood
 → most 1D models assume eddy diffusion coefficient to employ the vertical transport
- This is simplified but the most practical

We focus on globally averaged structure (~45°) by representing all vertical transport processes combined with eddy diffusion coefficients (overturning circulation, wave breaking, etc \rightarrow conceptual quantity)

15

Eddy Transport Sensitivity Studies

		Eddy Diffusion	
	Eddy Diffusion	Coefficient at	
	Coefficient at	$85-100 \text{ km} (\text{m}^2)$	Temperature
Case Name	60–70 km (m ² s ^{-1})	s ⁻¹)	Profile
Nominal	4 (a)	10 (b)	VIRA (d)
Case 1	4 (a)	360 (c)	VIRA (d)
Case 2	2	10 (b)	VIRA (d)
Case 3	2	360 (c)	VIRA (d)

References. (a) Woo & Ishimaru (1981); (b) von Zahn et al. (1980); (c) Mahieux et al. (2021); (d) Seiff et al. (1985)

Only the *Nominal case* (**black line**) and *Case 3* (**green line**) are shown for today

Nominal \rightarrow conventional eddy diffusion case

Case $3 \rightarrow$ high above 85 km and decreased by half between 60-70 km compared to the Nominal case

Nominal case: Size Distribution

Consistent with the earlier work

Case 3: Size Distribution

• The upper haze is extended in high eddy diffusion cases

18

Cloud Profiles

Mass loading is consistent with the in-situ observation

The upper haze layer is extended in Case 3 due to efficient eddy transport \rightarrow quantitatively consistent with the SOIR observations

H₂SO₄ and H₂O Profiles

- H₂SO₄ is highly supersaturated above 60 km (also reported by Dai et al. 2021)
- H₂O profile is sensitive to eddy diffusion coefficient between 60-70 km

Mechanism of H₂O Depletion

Cloud structure is almost determined by chemical production of H_2SO_4 \rightarrow similar liquid H₂O VMR in all cases \rightarrow similar H₂O sedimentation flux in all cases chemical loss upward vapor flux + liquid flux $\rightarrow K_{eddy} \frac{\partial f_{H2O}}{\partial z}$ $\rightarrow \Phi_{H20,down}$ ဂါ ဂါ ဂျို $\Phi_{H20,down} \sim const = K_{eddy} \frac{\partial f_{H20}}{\partial z} \rightarrow \frac{const}{K_{eddy}} = \frac{\partial f_{H20}}{\partial z}$ VMR gradient varies significantly with

transport efficiency between 60-70 km

Comparison with GCM

Assuming the transport timescales are similar in both 1D and 3D models $\tau \sim H/w, \tau \sim H^2/K_{eddv} \rightarrow K_{eddv} \sim wH$ (in GCM)

Best-fit eddy diffusion $K_{eddy} = 2 \text{ m}^2/\text{s} @60-70 \text{ km}$ $K_{eddy} = 360 \text{ m}^2/\text{s} @85-100 \text{ km}$

AFES GCM (Takagi+ 2018) @60-70 km $w \sim 1 \text{ mm/s}$ $K_{eddy} \sim wH$: 5 m²/s

IPSL GCM (Navarro+ 2022) @85-100 km w ~0.1 m/s K_{eddy}~wH: 370 m²/s These values agree within a few factors of degrees

Good approximation of transport in 1D

Temperature Sensitivity Study

Temperature Sensitivity Studies

We extrapolated temperature profiles SOIR observations to see the effect of temperature condition on the cloud structure (Mahieux 2015) \rightarrow Case 5 (terminator condition) Case 3 eddy diffusion is also used for Case 5

H₂SO₄ Profiles

- 1. SVP is elevated by high temperature (cyan line)
- 2. H_2SO_4 is subsaturated above 90 km \rightarrow aerosol evaporation

 H_2SO_4 VMR increases to ~3 ppb \rightarrow equivalent to the upper limit suggested by Sandor+ (2012)

Aerosol Acidity Profiles

H₂O Profiles

Water is removed from the liquid phase due to the equilibrium condition change \rightarrow The H₂O VMR increases above 85 km

The aerosol-atmosphere interaction can cause the H_2O VMR increase observed by the SOIR

Discussion: Aerosols as a Sulfur Source

#

28

Zhang+ (2010) proposed that evaporation of sulfuric acid aerosols can provide the sulfur source

H₂SO₄ Profiles Assumed in Zhang+ (2010) ^{# 29}

Zhang+ (2010) assumed the supersaturated H_2SO_4 vapor profile to reproduce the SOIR observation \rightarrow ~5 ppm above 90 km

Previous observation and our results suggest ~3 ppb

 H_2SO_4 vapor from aerosols is not suitable for the source of SO_2

Summary of Karyu+ (2024) PSJ

- We performed microphysics simulation with a set of different eddy diffusion profiles and temperature profiles based on previous observations
- The obtained H₂SO₄, H₂O, and aerosol profiles agree with observations when the eddy diffusion coefficient is 2 m² s⁻¹ at 60-70 km and 360 m² s⁻¹ above 85 km
- The transport timescale of the eddy diffusion coefficient roughly agrees with those simulated by GCM
- Aerosols can increase VMR of H₂O and H₂SO₄ above 85 km with SOIR temperature profile, but the H₂SO₄ is not sufficient enough to increase SO₂ VMR around the same altitude

Future prospects

- Taking acount condensation nuclei size distribution
- Coupling with photochemistry
- Coupling with atmospheric radiation