

Gabriella Gilli^{1,2}

D. Quirino², T. Navarro³, M. Turbet⁴, J. Leconte⁷, S. Lebonnois⁴, T. Fauchez⁶, L. Kaltenegger⁵, F. Selsis⁷, E. Millour⁴

1. Instituto de Astrofísica de Andalucia (IAA), Granada, Spain 2. Instituto de Astrofísica e Ciências do Espaço (IA), Lisbon, Portugal 3. Trottier Space Institute, McGill Univ. Montreal, Canada 4. Laboratoire de Météorologie Dynamique (LMD), Paris, France, 5. Laboratoire d'Astrophysique de Bordeaux, Bordeaux, France, 6. NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 7. Department of Astronomy, Carl Sagan Institute, Cornell University, Ithaca, USA

Building "virtual" planets using our Solar System planets as proxies

Generic-Planet Climate Model (G-PCM) for exoplanets and paleoclimate studies (Forget et al. 2014, Leconte et al 2013, Turbet et al. 2016,2021, Wordsworth et al. 2011, Fauchez et al. 2021, Quirino et al. 2023, Chaverot et al. 2022, 2023)

- Model atmosphere of rocky exoplanets close to M-dwarf star
- Hypothesis: Their atmosphere evolved into a modern-Venus

Reality

Aerosol distribution in the G-PCM for Venus-analogues

Aerosol	Mode 1	Mode 2	Mode 2p	Mode 3	"unknown" UV
Effective radius, R_{eff} (μm)	0.49	1.23	1.56	4.25	0.5
Effective variance, ν_{eff} (μm^2)	0.21	0.067	0.044	0.062	0.1
Top pressure , p_t (bar)	0.1	0.1	0.23	0.4	0.037
Base pressure , p _b (bar)	1	0.11	1	1	0.33

Aerosols as function of their size following Venus Express observations

From Haus et al. 2014, 2015 model

Presence of cloud essential to maintain the superrotation

Validation test: Venus simulated with the G-PCM

Courtesy of D.Quirino

Garate-Lopez & Lebonois 2018

"VALIDATION" of Venus-like G-PCM simulations

ZONA WINDS: SUPERROTATION

V-PCM: Garate-Lopez & Lebonnois 2018

G-PCM: Forget et al. In preparation

- Generic-GCM reproduces the superrotation regime: pressure range, wind speed, high-latitudes jets;
- Reasonable agreement between the two models except for the equatorial jet and the amplitude of the maximum

"VALIDATION" of Venus-like G-PCM simulations

ZONA WINDS: variation with Insolation/orbital distance

Orbital distance	Rotation rate	Tangential velocity (1)	Maximum zonal wind speed (2)	Ratio
r, [AU]	$\Omega, [rad s^{-1}]$	v_t , $[m s^{-1}]$	$[\overline{u}]$, $[m s^{-1}]$	$[\overline{u}]$: v_t
0.72	$2.98\cdot 10^{-7}$	1.80	83.8	46.6
0.90	$2.15\cdot 10^{-7}$	1.30	63.9	49.2
1.00	$1.84\cdot 10^{-7}$	1.11	65.8	59.3
1.20	$1.40\cdot 10^{-7}$	0.85	57.5	67.6

- Overall *decrease* in zonal wind speed with *decreasing* insolation (weaker dayto-night energy redistribution)
- Zonal wind structure remains present in all 4 orbital distances:

Superrotation is a robust dynamical feature in this insolation range.

Planetary parameters of potential Venus-analogues

ble 1. Planetary parameters used in the Generic-PCM for the	he simulations of a m	odern Venus-like a	tmosphere	
Parameter / Planet	LP 890-9 b	LP 890-9 c	TRAPPIST-1 c	TRAPPIST-1 d
Host star spectral type	M6V	M6V	M8V	M8V
Distance, d (pc)	32.4	32.4	12.4	12.4
Orbital Period, T (days)	2.73	8.46	2.42	4.05
Semimajor axis, a (AU)	0.01875	0.03984	0.01580	0.02227
Stellar irradiation, S (W m ⁻²)	5569	1234	3015	1518
Stellar irradiation, S (S_{\oplus})	4.09	0.91	2.21	1.12
Radius, R (km)	8410	8709	6995	5026
Radius, R (R_{\oplus})	1.32	1.37	1.10	0.788
Gravitational acceleration, g (m s^{-2})	13.19	13.35	10.65	6.11
Solid-body rotation period, P (s)	236 000	730 700	209 000	350 000
Solid-body rotation rate, Ω (rad s ⁻¹)	2.66×10^{-5}	8.60×10^{-6}	3.00×10^{-5}	1.80×10^{-5}
Radiative imbalance at TOA (W m ⁻²)	1.5 - 2	< 1	< 1	< 1
Number of orbits of the simulation	40k	12k	25k	40k
References	Delrez+2022	Derrez+2022	Agol+2021	Agol+2021
Eccentricity and Obliquity are set to 0.				

Temperature profiles: LP 890-9 c and TRAPPIST-1 c

Hot-spot eastward the substellar point \rightarrow strong equatorial jet

Predicted emission phase curve of <u>LP 890-9c</u> (time-averaged over 10 orbits)

- Largest contrast are between 5 and 7 ppm for continuum and 15-μm CO₂ bands, respectively
- Largest amplitude modulation is 2.4 ppm, not detectable with current instruments

Quirino, Gilli et al. 2023 MNRAS letter

Predicted emission phase curve of <u>Trappist 1c</u>

- Largest contrast are between 215 and 100 ppm for continuum (~18-μm) and 15-μm CO₂ bands, respectively.
- 3D model confirmation of no thick Venus atmosphere (contrast below JWST obs at 15um ~400 ppm)
- Largest amplitude modulation is ~45 ppm at 15 μ m

Quirino, Gilli et al., in preparation

•

•

™ ≝CSIC Gabriella Gilli

Mass-radius relationships: temperature at the cloud top (p ~ 37-mbar)

LARGER RADII LEAD TO:

- Warmer cloud top temperature field;
- Smaller eastward shift of the temperature maximum;
- Two high-latitudes (~60º N/S) temperature maxima in the largest two radii

Quirino et al. in preparation

TAA METTERE PLANTA & CSIC Gabriella Gilli

FUTURE WORK / LINES OF IMPROVEMENTS

1. change the altitude range of the prescribed clouds to evaluate the impact on the radiative budget and on the synthetic observable

Master student at IAA Working on that right now!

X H₂SO₄ condensation point: $p \sim 1.38$ -bar; T ~ 366 K X H₂SO₄ freezing point: $p \sim 0.33$ -bar; T ~ 275 K

FUTURE WORK

2. Implement a *simplified microphysical Venus-like cloud model* into the GCM (following Stolzenbach et al. 2023) to form H_2SO_4 - H_2O droplets in the atmosphere of the exoplanets "interactively"

