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Plan

• Simple model of Hadley circulation (Held & Hou)
• Super-rotation with meridional overturning and diffusive eddies 

(Gierasch)
• Extension with strong momentum diffusion (Yamamoto et al.)
• Angular momentum mixing
• Classification of waves
• Wave-zonal flow interactions and non-acceleration



Simple theoretical models: 
Held & Hou (1980)
• Aim is to determine properties 

and width of axisymmetric 
Hadley circulation and 
associated zonal flow and 
thermal structure
• Consistent with steady thermal 

balance
• Hydrostatic and gradient wind 

balance

Isaac Held Arthur Y. Hou



Simple theoretical models: 
Held & Hou (1980)
• Two-layer atmosphere
• Quasi-inviscid so angular 

momentum conservation applies 
in the free atmosphere by the 
overturning circulation
• Hydrostatic and Gradient wind 

balance at all 𝑦 = sin𝜑
𝜕
𝜕𝑧

𝑓𝑢 +
𝑢! tan𝜑

𝑎
= −

𝑔
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• Weak flow 𝑢 ≈ 0  near the 
surface due to frictional drag

YM = sin fM



Simple theoretical models: 
Held & Hou (1980)

• Asssume a radiative equilibrium potential 
temperature profile
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•  𝜃!∆"is equator-pole potential temperature 
contrast

• 𝜃!∆#is vertical potential temperature contrast 
over z=0-H
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Simple theoretical models: 
Held & Hou (1980)

• Assume meridional velocity 𝑣 = 0 in the 
extra-tropical free atmosphere. 
• From gradient thermal wind balance

𝑢#$ = Ω𝑎 cos𝜑 2ℛ
𝑧
𝐻
+ 1 − 1

• Where ℛ = ∆!)*
+","

 is thermal Rossby number

• Within the Hadley cell u is determined by AM 
conservation, assuming u = 0 on the equator.

𝑢%& =
Ω𝑎 sin!𝜑
cos𝜑

Extra-tropics

Tropics



Simple theoretical models: 
Held & Hou (1980)

YM = sin fM• Use gradient wind balance to infer the 
vertical mean temperature, so in the 
Hadley cell
•
'( " )'(
('

= *()
*

!+% for |y|<YM

• Solve for YM or 𝜑!  using matching 
conditions
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• And the thermal balance condition for 

the Hadley cell
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Simple theoretical models: 
Held & Hou (1980)

YM = sin fM• Solution for yM can be expressed in terms 
of the root of the equation
1
3
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• Or rearranging
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• Which can be solved numerically

• Asymptotic limits can be found for 

• ℛ ≪ 1:	 𝑦! ≈ #ℛ
"
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• ℛ ≫ 1:	 𝑦! ≈ 1 − "
(ℛ
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Simple theoretical models: 
Held & Hou (1980)

YM = sin fM• Verify for continuously stratified, weakly viscous fluid (𝜈 in 
the vertical only)
• Note that VERTICAL viscosity can only diffuse m DOWNGRADIENT
• Hence there can be no local maximum of m exceeding Ωa2

• Solve time-dependent, 2D, axisymmetric primitive equations 
numerically with heating/cooling via Newtonian relaxation

𝐷𝜃
𝐷𝑡

=
𝜃, − 𝜃
𝜏

• Meridional streamfunction width consistent with inviscid yM 
estimate

• Strength of circulation ~1/𝜈
• U ≤ 0 on/near the equator
• U ~ AM-conserving for 𝜑 ≤ 𝜑- 
• U varies smoothly → 0 from 𝜑- → 90o

y

Y                                   U



Simple theoretical models: 
Held & Hou (1980)
• Estimate Sglobal for axisymmetric circulations by using solutions for uHC 

and uET as given above.
• u = uHC for 0 ≤ f ≤ fM [p ≤ 0.8pS]
• u = uET for fM < f ≤ π/2 [for all p]
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[Lewis et al. 2021]



Simple theoretical models: 
Held & Hou (1980)

• Estimate Sglobal for axisymmetric 
circulations by using solutions for uHC 
and uET as given above.
• u = uHC for 0 ≤ f ≤ fM [p ≤ 0.8pS]
• u = uET for fM < f ≤ π/2 [for all p]

• S depends primarily on ℛ
• Asymptotic limits can be found for

• ℛ ≪ 1: 	 𝑆 ≈ &
$
ℛ

• ℛ ≫ 1: 	 𝑆 ≈ $
#
= constant

y

Earth

Mars

Titan

Venus

[Lewis et al. 2021]



Simple theoretical models: 
Gierasch (1975)

• Conceptual model to maintain a strong quasi-
axisymmetric super-rotation
• Angular momentum is transferred upwards and 

polewards by a global scale meridional 
overturning circulation
• Eddies transfer AM equatorwards (up-gradient), 

accelerating super-rotation in the tropics
• Parameterised as an anisotropic viscosity 𝜈% , 𝜈&  with 𝜈% ≫
𝜈&

• Diffusion of heat is neglected 
• Otherwise it erodes the equator-pole temperature contrast 
• Reduces upper level U which should be in cyclostrophic 

balance for fast super-rotation

Peter Gierasch



Simple theoretical models: 
Gierasch (1975)

• Scale analysis and steady state solution of 
axisymmetric primitive equations, assuming simple 
spatial structures of key variables
• Eddy thermal diffusivity assumed small enough to be negligible

1 ≪ '!%
()"

≪ 𝑅𝑖 = *"

+,/+.
 

so temperature structure largely determined by radiaPve equilibrium 
and 𝑊~𝑄//𝑁0

• Strong super-rotation maintained by horizontal viscosity provided 
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• Cyclostrophic/gradient wind balance prevails if 
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Peter Gierasch



Gierasch/Rossow-Williams conceptual model
Summary

Thermally-
Direct Hadley
circulation

Angular momentum transported upwards & 
polewards

E

Prograde mid-latitude jets
Eddy momentum fluxes
Transport AM up-gradient towards equator

P P+ +..

Surface friction torques exchange AM with planet

Prograde equatorial jet & max in m
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• Super-rotation 
driven/maintained by 
combination of 
• axisymmetric overturning 

circulation and 
• up-gradient equatorward 

eddy transport of AM
• Rossow & Williams (1979) 

• generation and 
dissipation of barotropic 
Rossby waves act as AM 
transport mechanism via 
barotropic instability? 



Simple theoretical/numerical models: 
Parameter sweeps

• Exploration of a 3D dimensionless parameter 
space using time-dependent, 2D axisymmetric 
numerical models with Newtonian 
heating/cooling (cf Held & Hou 1980), solving 
primitive equations on a sphere
• Matsuda (1980; 1982)
• Yamamoto et al. (2009 - YIY); 
• Yamamoto & Yoden (2013 - YY)

• Define key external parameters to vary
• Thermal Rossby number ℛ = ∆"*+

,#-#
 (as before)

• Horizontal and vertical Ekman numbers  
𝐸. =

𝜈.
Ω𝐻$

; 𝐸+ =
𝜈+
Ω𝑎$

• Other dimensionless groups fixed

Peter Gierasch

YIY’s

ℛ



Simple theoretical/numerical 
models: Parameter sweeps 
• Exploration of a 3D dimensionless 

parameter space using time-dependent, 
2D axisymmetric numerical models with 
Newtonian heating/cooling (cf Held & 
Hou 1980), solving primitive equations on 
a sphere
• Matsuda (1980; 1982)
• Yamamoto, Ishioka & Yoden (2009 – YIY)

• Define key external parameters to vary
• Thermal Rossby number ℛ = ∆#3%

4")"
 (as before)

• Horizontal and vertical Ekman numbers  
𝐸& =

𝜈&
Ω𝐻0 ; 𝐸% =

𝜈%
Ω𝑎0

• Other dimensionless groups fixed

ℛ

ℛ

𝐸& = 2.1×1056
ℛ = 0.12

ℛ = 0.12

𝐸& = 2.1×1057
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Simple theoretical/numerical 
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Simple theoretical/numerical 
models: Parameter sweeps 
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Simple theoretical/numerical models: 
Parameter sweeps 
• Scale analysis and steady state solution of axisymmetric primitive equations with 

anisotropic viscosity, assuming simple spatial structures of key variables

• Reduce parameter dependence to an algebraic equation in 𝑆Y = Z[
\

𝑆′! + 2𝑆Y + 𝐵𝑆′
2 + 𝑆′
1 + 𝑆′

𝐴𝑆′
2

2 + 𝑆′
1 + 𝑆′

+ 1 = 2ℛ

• Where 𝐴 = 𝜋!𝜏];7/𝜏^ and 𝐵 = 20𝜋! _
: `8`(

!
and	

𝜏];7 = radiative timescale; 𝜏%, 𝜏^ = ;*

P(
,%

*

P8

[Yamamoto & Yoden 2013; Lewis et al. 2021]



Simple theoretical/numerical models: 
Parameter sweeps 
• Scale analysis and steady state solution of axisymmetric 

primitive equations with anisotropic viscosity, assuming 
simple spatial structures of key variables

• Reduce parameter dependence to an algebraic 
equation in 𝑆8 = 79

6

𝑆′0 + 2𝑆8 + 𝐵𝑆′
2 + 𝑆′
1 + 𝑆′

𝐴𝑆′
2

2 + 𝑆′
1 + 𝑆′

+ 1 = 2ℛ

• Where 𝐴 = 𝜋0𝜏:)+/𝜏&  and 𝐵 = 20𝜋0 ;
4 <$<!

0
and	

𝜏:)+ = radiative timescale; 𝜏% , 𝜏& = )"

=!
, %

"

=$

• Asymptotic dependences
• ℛ ≪ 1: 	 𝑆 ∝ ℛ - Geostrophic flow
• ℛ > 1: 	 𝑆 ∝ ℛ!/# - Cyclostrophic flow
• ℛ ≥ 10: 	 𝑆 ∝ ℛ!/$ - Modified cyclostrophic flow

[Yamamoto & Yoden 2013; Lewis et al. 2021]



Trends in S 
(cylindrical annulus)
• 3 basic regimes 

I. V. Slow rotation (~angular 
momentum conserving 
except in Ekman layer): S ~ 
constant

II. Moderate rotation 
(cyclostrophic/gradient 
wind and diffusive 
interior): S rises to shallow 
peak 

        (𝑆 ≈ 𝜀𝜂_/!𝜎)_/!𝑄)_)
III. Rapid rotation (quasi-

geostrophic): 
  S ~ Q-2 ~ Ω-2

-2

I. II.     III.

31/5-3/6/19 IVC2019 22

∝ 𝑅𝑜>
5;/0𝜎;/0



How do eddies ACTUALLY mix & transport 
angular momentum?
• Which quantity to homogenize?
• Angular momentum?
• Vorticity? 

• [Relative, absolute or potential?]
• Angular velocity/tangential stress?
• Buoyancy?
• …..

• Depends strongly on the mechanism generating the eddies…..
• Instability?
• Direct forcing…?



How do eddies ACTUALLY mix & transport 
angular momentum?
• Angular Momentum mixing, for 

example, leads to (relative) 
vorticity expulsion 
• [Gough & Lynden-Bell 1968]

• This mixes towards a state in which
       𝑚 = (Ω𝑟 + 𝑢). 𝑟 = 𝑐𝑜𝑛𝑠𝑡. 

Or 
𝜴×𝒓 + 𝒖 =

𝑐𝑜𝑛𝑠𝑡.
𝑟 𝒆.

• Hence ∇×𝒖 = −2Ω𝒌 and the end-
state is irrotational
• Demonstrated (roughly!) in a 

simple experiment?
• Inner beaker observed to increase its 

rotation  



How do eddies ACTUALLY mix & transport 
angular momentum?

• More generally vorticity 
expulsion in randomly stirred 
flow acts locally but not globally
• With background rotation, initial 

solid body rotation with stirring 
forms intense cyclonic vortices
• [e.g. McEwan 1976 Nature] 
• -> Local concentrations of vorticity
• Without background rotation, 

however, no tendency to form 
vortices…..

No background rotation With background rotation



How do eddies ACTUALLY mix & transport 
angular momentum?
• Vorticity mixing is another possibility, especially for rotating 

barotropic flows
• Taylor (1915); Rossby (1947); Eady (1950)

• For an axisymmetric (or zonally averaged) flow, absolute vorticity 𝜉 is 
related to m by

𝜉 =
1
𝑟
𝜕𝑚
𝜕𝑟

= 2Ω + 𝜔 +
𝜕𝑢
𝜕𝑟

• Mixing to a state of uniform 𝜉 consistent with uniform angular 
velocity (though not uniquely so)
• Cf viscous diffusion releasing tangential strain…..?
• See also Rossow & Williams (1979)….vorticity mixing associated with 

barotropic instability



How do eddies ACTUALLY mix & transport 
angular momentum?

• Nonaxisymmetric eddies in a 
stratified atmosphere on a 
rotating planet are not uniformly 
random motions!
• Dominated by waves, at least at 

large scales
• But what kind of waves…?



Super-rotation: an alternative non-classical 
GRW scenario 

Thermally-
Direct Hadley
circulation

E

Prograde equatorial jet & max in m
Eddy momentum fluxes
transport AM upwards/downwards at 
equator & towards poles

P P+ +..

Surface friction torques exchange AM with planet
31/5-3/6/19 IVC2019 28

• An alternative scenario in 
which up-gradient AM 
transfer takes place in the 
vertical 

• Still satisfies the Starr-Hide 
theorem provided 
horizontal AM transfers are 
down-gradient

• Not like a viscosity – needs 
the action of vertically 
propagating waves….? 



How do eddies ACTUALLY mix & transport 
angular momentum?

• Nonaxisymmetric eddies in a 
stratified atmosphere on a 
rotating planet are not uniformly 
random motions!
• Dominated by waves, at least at 

large scales
• But what kind of waves…?



Start with linearised primitive equations for a 
stratified atmosphere at rest on a spherical planet

• J7K
JL
− 𝑓𝑣K + M

6 89: ;
JN!

JO
= 𝑋K zonal momentum

• JPK
JL
+ 𝑓𝑢K + M

6
JN!

J;
= 𝑌′ meridional momentum

• M
6 89: ;

J7K
JO
+ J

J;
𝑣′ cos𝜑 + M

5"

J
JQ

𝜌R𝑤′ = 0 continuity

• J
#NK
JQJL

+𝑁S𝑤K = TUK
?

Internal energy

• With boundary conditions such as
• noYnp = −𝑤Y n'o

nq =
rs$ " tY

% at z=0 [for a flat lower boundary]

𝑓 = 2Ω sin𝜑
Φ = geopotential
𝑋8, 𝑌′ = friction or forcing
𝐽 = diabatic heating
H = scale height



Look for separable solutions of the form
𝑢K, 𝑣K, ΦK = 𝑒

$
#%𝑈 𝑧 A𝑢 𝜆, 𝜑, 𝑡 , A𝑣 𝜆, 𝜑, 𝑡 , DΦ 𝜆, 𝜑, 𝑡 (*)

𝑤K = 𝑒
$
#%𝑊 𝑧 F𝑤 𝜆, 𝜑, 𝑡

• Take 𝑋K = 𝑌K = 𝐽K = 0 and substitute (*) into momentum equations to 
obtain

JV7
JL
− 𝑓 A𝑣 + M

6 89: ;
J WN
JO
= 0 (a)

J XP
JL
+ 𝑓A𝑢 + M

6
J WN
J;

= 0    (b)

• Separate z-dependence via a separation constant 1/𝑔ℎ to obtain
M

6 89: ;
JV7
JO
+ J

J;
A𝑣 cos𝜑 + M

YZ
J WN
JL
= 0 (c) [Equivalent depth h]



Laplace Tidal Equations
JV7
JL
− 𝑓 A𝑣 + M

6 89: ;
J WN
JO
= 0 (a)

J XP
JL
+ 𝑓A𝑢 + M

6
J WN
J;

= 0    (b)

M
6 89: ;

JV7
JO
+ J

J;
A𝑣 cos𝜑 + M

YZ
J WN
JL
= 0 (c) 

• Together with vertical structure equations
<#[
<Q#

+ \#

YZ
− M

]?#
𝑊 = 0; 𝑈 = <[

<Q
− [

S?
 (d,e)

• And suitable boundary conditions



Now look for separable solutions of the form
𝑢:, 𝑣:, Φ: = 𝑅𝑒 0𝑢 𝜑 , 0𝑣 𝜑 , 2Φ 𝜑 exp 𝑖 𝑠𝜆 − 2Ω𝜎𝑡

• Where s is zonal wavenumber index and 2𝜋/2Ω𝜎 is the wave period (or 𝜋/2𝜎
is the period in days).
• Substituting the solution into (a)-(c) and eliminating 0𝑢 𝜑 and 0𝑣 𝜑 leads to 

“Laplace’s Tidal Equation”
ℒ2Φ + 𝛾2Φ = 0 (f)

• Where 𝛾 = ;</=/

>?
is Lamb’s parameter and ℒ is a second order differential 

operator in 𝜇 = sin𝜑

ℒ =
𝑑
𝑑𝜇

(1 − 𝜇@)
(𝜎@ − 𝜇@)

𝑑
𝑑𝜇 −

1
𝜎@ − 𝜇@

𝑠@

1 − 𝜇@ −
𝑠(𝜎@ + 𝜇@)
𝜎(𝜎@ − 𝜇@)

• With boundary conditions that 2Φ is bounded at the poles 𝜇 = ±1



Solve (f) as an eigenvalue problem
• Prescribe s and s and 

solve (f) 
ℒΘA

(C,E) + 𝛾A
(C,E)ΘA

(C,E) = 0
for different integer values 
of n
• ΘA  are Hough functions

• E.g. see Longuet-Higgins 
(1968)

• Dispersion relations 
computed as function of 
g-1/2 

Eastward waves

Westward waves



Free atmospheric waves
• Several families of waves

• Eastward modes include high 
frequency inertia-gravity 
modes and the equatorial 
Kelvin mode

• Westward modes also 
include high frequency 
inertia-gravity waves and low 
frequency planetary Rossby 
waves (n’≥1) and the mixed 
planetary-gravity mode (n=0)

• Asymptotic limits
• Low rotation 𝛾0%/$ → ∞  

waves are global in extent
• Fast rotation 𝛾0%/$ → 0  

waves are trapped either 
near the equator (h > 0) or 
the poles (h < 0) 

Eastward waves

Kelvin wave



Free atmospheric waves
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Eastward waves

Westward waves

Mixed Rossby-Gravity

Equatorial Rossby 
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Summary & remarks
• For a stationary atmosphere (co-rotating with a spherical planet), there exists 

a well defined spectrum of freely-evolving (neutrally stable) waves
• Various combinations of stratification/buoyancy and inertial/Coriolis restoring forces
• Propagate dispersively in the zonal direction
• Characteristic and distinctive spatial structures
• Propagate dispersively (and anisotropically) also in the vertical with wavenumber 𝑚2

(4,6)

• Phase and group velocities, and spatial structures, depend on Lamb parameter 𝛾0%/$ =
𝑔 ℎ /(Ω𝑎) [cf thermal Rossby ℛ and Burger ℬ numbers]

• Asymptotic forms are well approximated for fast rotation 𝛾GH/@ → 0  by 
tangent-plane models
• E.g. equatorial or mid-latitude b-planes

• Wave structures and dispersion relations are significantly modified in the 
presence of a zonally averaged shear flow [K𝑈(𝜑, 𝑧, 𝑡) ≠ 0], dissipation, 
forcing and nonlinearity
• Nevertheless, the classification and nomenclature of the linear, conservative waves are 

still used to classify similar wave types in other regimes…..

Used to classify each wave mode



How and when do waves accelerate or 
decelerate zonal flows?
• Wave-zonal mean interaction theory [Andrews & McIntyre 1976, 1978]
• Based on zonal mean primitive equations
• CDE
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How and when do waves accelerate or 
decelerate zonal flows?
• Problem: how to separate zonal mean circulation from eddies?
• Eddies also influence Eulerian zonal mean meridional flow (�̅�, U𝑤)
• Eddy heat fluxes can also implicitly influence zonal momentum 

• Instead, use Transformed Eulerian Mean (TEM) equations
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Remarks on TEM 

• Separates eddies and zonal mean circulations more “cleanly”
• Residual mean circulation approximates to a Lagrangian Mean circulation under 

some circumstances
• The Eliassen-Palm (EP) flux –F represents an effective eddy flux of angular 

momentum
• So 𝜵. 𝑭 represents a convergence of AM flux, producing an eastward tendency for T𝑢 

from eddy stresses
• In quasi-geostrophic flows, F is simplified [terms in blue] and 𝜵. 𝑭 = 𝑣8𝑞′ 

• EP fluxes are directly associated with the so-called Eliassen-Palm theorem 
(Eliassen & Palm 1961) and generalisations by Boyd (1976) and Andrews & 
McIntyre (1976,1978), and the Charney-Drazin non-acceleration theorem 
(Charney & Drazin 1961).



Generalised EP Theorem
• Eliassen & Palm (1961) considered steady, linear waves on a basic zonal 

flow O𝑢(𝜑, 𝑧) with no frictional or diabatic effects (on a b-plane)
• They showed that under these conditions 𝜵. 𝑭 = 0

• This result was extended to non-zero X’, Y’ and Q’, and to spherical 
geometry, by Boyd (1976) and to time-varying waves by Andrews & 
McIntyre (1976,1978). 
• A&M showed that 

𝜕𝐴
𝜕𝑡 + 𝜵. 𝑭 = 𝐷 + 𝑂(𝛼[)

• A is “wave activity density” and D represents frictional and diabatic effects.
• [𝐴 ≈ %

$
𝜌!𝑞8$/ 𝜕T𝑞/𝜕𝑦  for quasi-geostrophic problems ]

• a represents wave amplitude so this term represents higher order nonlinearity
• Makes explicit the dependence of EP flux divergence on wave transience and non-

conservative effects



Generalised EP Theorem
• A&M showed that 

  Jr
JL
+ 𝜵. 𝑭 = 𝐷 + 𝑂(𝛼s)                 (*)

• A is “wave activity density” and D represents frictional and diabatic effects. 
• a represents wave amplitude so this term represents higher order 

nonlinearity
• Makes explicit the dependence of EP flux divergence on wave transience and 

non-conservative effects

• Note that (*) can also be written in the absence of friction and 
diabatic effects under some conditions as

𝜕𝐴
𝜕𝑡

= −𝜵. (𝒄𝒈𝐴) + 𝑂(𝛼Z)

where 𝒄𝒈 is the group velocity, so 𝑭 is related to group velocity



Non-acceleration Theorem
• TEM equations indicate that eddies will accelerate/decelerate zonal 

flow if 𝜵. 𝑭 ≠ 0
• But the Generalised EP theorem shows that 𝜵. 𝑭 = 0 for steady, 

linear and conservative waves
• Hence, under those conditions a possible mean flow satisfying the full TEM 

equations could be

• n'*np =
n'(
np = 𝑣∗ = 𝑤∗ = 0.   i.e. a non-accelerating solution

• [Given appropriate boundary conditions]

• The corollary of this is that wave transience, dissipation or forcing 
may lead to 𝜵. 𝑭 ≠ 0 and an acceleration of a mean zonal flow



Non-acceleration 
Theorem: an illustration
• TEM equations indicate that eddies 

will accelerate/decelerate zonal 
flow if 𝜵. 𝑭 ≠ 0
• Illustrate with an analytic example 

consisting of a linear superposition 
of a QG finite-amplitude, 
baroclinic/barotropic wave and 
zonal flow with diabatic heating
• N2 assumed uniform
• Formulated to be non-interacting free 

modes so 𝒗). ∇𝑄 = 0
• i.e. 𝑣8𝑄′ = 0 = ∇. 𝑭 even though 

individual momentum and heat fluxes 
are non-zero

[Read 1985]
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Non-acceleration 
Theorem: an illustration
• TEM equations indicate that eddies 

will accelerate/decelerate zonal 
flow if 𝜵. 𝑭 ≠ 0
• Illustrate with an analytic example 

consisting of a linear superposition 
of a QG finite-amplitude, 
baroclinic/barotropic wave and 
zonal flow with diabatic heating
• N2 assumed uniform
• Formulated to be non-interacting free 

modes so 𝒗). ∇𝑄 = 0
• i.e. 𝑣8𝑄′ = 0 = ∇. 𝑭 even though 

individual momentum and heat fluxes 
are non-zero

s𝑢 𝑢8𝑣′ 𝑣8𝜕𝜓8/𝜕𝑧

EP Flux F      �̅�  𝜒 ∗

[Read 1985]



Critical layer absorption (a quick summary!)

• Propagation of Rossby or inertia-gravity 
waves may be strongly affected in regions 
where phase speed 𝑐 ≈ �̂� 
• a CRITICAL LAYER or LINE

• Group velocity cg may become small 
perpendicular to critical line
• Reduced wavelength normal to critical 

line -> increased dissipation and 
nonlinearity
• E.g. breaking and overturning of wave

• Absorption and dissipation of wave 
pseudo-momentum may lead to 
enhanced acceleration of �̂� near critical 
layer 
• Hence �̂� tends to be accelerated towards 

phase speed c as wave dissipates

Credit: Vallis [2017]



Summary

• Held & Hou model captures many aspects of meridional overturning circulation
• With some global super-rotation but without local super-rotation

• Gierasch model provides overall concept for super-rotation via diffusive eddies
• Extended to strongly viscous flows by Yamamoto & Yoden

• can produce S ~ 10 as on Venus…..
• Leads to scaling dependence of Global super-rotation on Ω and ℛ
• Vorticity and its relatives is more likely to be diffused by (QG?) eddies or waves, 

though upward AM transport possible
• Wave-zonal flow interaction requires 𝜵. 𝑭 ≠ 0 – wave dissipation, forcing or 

transience?
• Critical layers facilitate dissipation of waves and acceleration of zonal flows 

towards phase speed c


