Surrogate Modeling for Computationally Expensive Simulations of Supernovae in High-Resolution Galaxy Simulations

Keiya Hirashima¹

With Kana Moriwaki¹, Michiko S. Fujii¹, Yutaka Hirai^{2,3}, Takayuki R. Saitoh⁴, Junichiro Makino⁴, and Shirley Ho⁵

¹University of Tokyo, Japan, ²Tohoku University, Japan, ³University of Notre Dame, USA ⁴Kobe University, Japan, ⁵CCA, Flatiron Institute, USA

2023/10/19

CPS Seminar

Credit: ESO/PESSTO/S. Smartt Butusova Elena/Shutterstock.com Art tools design/Shutterstock.com anttoniart/Shutterstock.com Gorodenkoff/Shutterstock.com

Self-Introduction

Keiya Hirashima

PhD student (the University of Tokyo)Research interest

- Galaxy formation and evolution
- Surrogate modeling for SN feedback with machine learning
- •Some other projects…
 - Surrogate modeling with GNNs/transformers
 - Foundation model to describe the morphology of galaxies

What type of the galaxy is this

T prompt	Shift + Return to add a new line
What type of the galaxy is this?	
Output	
spiral	
Generated in 1.24 seconds	1

- Introduction: Overheads of galaxy simulations
- #1 A Hamiltonian splitting with deep learning
- #2 Surrogate modeling for the SN feedback
- Summary

Galaxy Simulations Using SPH*

The formation of the galaxy [1]. *SPH: Smoothed Particle Hydrodynamics [1] <u>https://www.youtube.com/watch?v=DDsUXRfs6ZQ</u> [2] Applebaum et al. (2021) [3] Grand et al. (2021)

ASURA-FDPS (N-body/SPH)

(based on Saitoh+08,09, lwasawa+16)

- Gravity + Hydrodynamics
 - (DISPH; saitoh+13)
- Radiative Cooling/Heating (Ferland+17)
- Star formation (Hirai in prep.)
- Feedback
 - SNe Ia/IIb, AGB, Neutron star merger
- Chemical evolution (CELib; Saitoh17)
- FUV background
- About to accomplish star-bystar simulations… but…
 - Previous work [2, 3] : $10^3 M_{\odot}$
 - Our goal (ASURA-FDPS) : $10M_{\odot}$

Overheads in Galaxy Formation Simulations

The parallelization efficiency saturates at ~10³ CPU cores.

e.g.,

- GADGET-4(Springel+21)
- DC Justice League (Applebaum+21)
- Fire-2(Hopkins+18)

- Due to small timescale regions (e.g. SNe), the communication overhead occurs.
- Even the latest supercomputers cannot solve it (e.g., Fugaku has ~10⁶ CPU cores).

Communication Overheads

The integration with short timesteps needs a huge number of calculations and inter-node communications.

Calculation cost of 1 global timestep ($\Delta t \sim 10^6$ yr)

How can I avoid the bottleneck?

- Introduction: Overhead of galaxy simulations
- #1 A Hamiltonian splitting with deep learning
- #2 Surrogate modeling for the SN feedback
- Summary

Hamiltonian Splitting Method

credit:[Upper: NASA/JPL-Caltech/ESO/R. Hurt, Lower-Right: NAOJ, Lower-Left: ESO/M. Kornmesser]

Use multiple integration methods depending on the properties of the regions.

(Fujii et al. 2007; Saitoh et al. 2010; Pelupessy et al. 2012)

- Long timescale regions require the global (long) timestep.
- Short timescale regions (SNe) require short timesteps with the gravitational perturbations.

Avoid Communication Overheads

Avoid Communication Overheads

- Need to know which particles will have small timesteps in advance
- Predict the boundaries of the shells using deep learning

Training Data (3D cartesian grids)

SN simulations in inhomogeneous turbulent clouds

Temperature	10 [K]	
Mean ambient density	40 ~ 60 [cm ⁻³]	
Input energy	10 ⁵¹ [erg]	
Total mass	10 ⁶ [M _☉]	
Mass of a gas particle	1 [M _☉]	
Softening parameter	0.5 [pc]	

(the equivalent resolution for our galaxy simulations)

32³ voxels (density distribution)

Deep Learning Model

- <u>Memory-In-Memory Network</u> (Wang et al. 2018)
 - Generates 2D video in the future
 - Convolutional Neural Networks (CNNs)
 - Convolution is the operation like inner products.
 - Increased the dimensionality: $2D \rightarrow 3D$

Let's learn the SN explosions with kernels!

Example. Edge detection

Learnable parameters (Convolutional Neural Networks)

Forecast the Evolution of the SN Shells in Density

- Taking the initial distribution, the ML model can forecast the spatiotemporal change in density due to a SN explosion.
- Duration: 0.2 Myr

Cross section view Left: Simulation data (ground truth) Right: Prediction by the 3D-MIM

Hirashima et al. 2023, accepted arXiv:2302.00026

Detect particles with small Δt

• With image processing, select (d) pale-gray region using (a) Initial Condition and (c) prediction

(a) Initial Distribution (t=0) (c) 3D-MIM (t=0.1 Myr) (d) Detected Particles

- The continuous region where the density becomes <90% is selected as the target region.
- Calculate the selected particles locally.

To the further speed-up

Sub-grid models

The rest of the region in the galaxy $\Delta t \sim 10^5$ yr

We need more physics!!

- Introduction: Overhead of galaxy simulations
- #1 A Hamiltonian splitting with deep learning
- #2 Surrogate modeling for the SN feedback
- Summary

Training Data (3D cartesian grids)

19

Simulations for SN feedback

The rest of the region in the galaxy $\Delta t \sim 10^5$ yr

Surrogate modeling for SN feedback

The rest of the region in the galaxy $\Delta t \sim 10^5$ yr

Prediction

10 pc

Prediction #2

Dense region : Velocities are estimated at a lower values.

Gibbs Sampling (2D)

- Initialize X⁰, Y⁰
- for *j*=1, 2, 3, … do
- sample $X^{j} \sim p(X | Y^{j-1})$
- sample $Y^{j} \sim p(Y | X^{j-1})^{j}$
- end for

Representation by Gibbs Sampling

The particle distribution is sampled by a Markov chain Monte Carlo method.

MCMC (Gibbs Sampling)

3D cartesian grids of density ~ 3D probability density function

ML + MCMC

Validation

- Ground Truth: 1 Msun sims (High-resolution)
- Baseline: 10 Msun sims ("Low"-resolution)
 - High resolution for galaxy simulations, cannot resolve supernova feedback (Hu+16, Steinwandel+20, Hirashima+23)
- Compered total thermal energy and outer momentum of hot particles (<10³ K) on test data (100 results of independent simulation)

Fidelity Evaluation in Thermal Energy

• Compered to the low-res. sims., our method can duplicate the thermal energy

Fidelity Evaluation in Outer Momentum

- Almost similar to the low-res. sims.
- Need to get the bias removed

Experiment | Rerun the simulation

Preliminary Restart Run from 0.1 Myr

- Introduction: Overhead of galaxy simulations
- A Hamiltonian splitting with deep learning
- Surrogate modeling for the SN feedback
- Summary

To conclude

-11

Hamiltonian Splitting

Hirashima et al. 2023, accepted for MNRAS <u>arXiv:2302.00026</u>

Direct Numerical Simulations

- Stochastic
- Fast

Deterministic

Expensive

SoftNeuro® [1] optimized 3D Unet for Fugaku!

	TF (Desktop, OneDNN) (16 cores / 32 threads)	TF (Fugaku) (1 node / 48 cores)	Softneuro (Fugaku) (1 node / 48 cores)
Elapsed time	710 [ms]	2820 [ms]	147 [ms]
CPU usage	36%	3.5%	68%

Morpho's "SoftNeuro" Enables 19x Faster Inference of 3D Simulation on Fugaku

2023/02/08

Press

x19 FASTER!

<u>https://arxiv.org/abs/2110.06037</u>
<u>https://www.morphoinc.com/</u>

Tokyo, Japan – February 8th, 2023– Morpho, Inc. (hereinafter, "Morpho"), a global leader in image processing and imaging AI solutions, announced today that it has provided deep learning inference engine "SoftNeuro®" to a project

Summary and Future Work

- > An approach for surrogating SN simulations with ML and MCMC
- Need more accurate predictions
 - ➤ try generative models?
- Need higher-res simulations
 - > Preparing for higher resolution (0.1 Msun) simulations
- Try particle-based models (e.g. Graph Neural Networks)

Thank You!!!!

