
Keiya Hirashima1
With Kana Moriwaki1, Michiko S. Fujii1, Yutaka Hirai2,3, Takayuki R. 
Saitoh4, Junichiro Makino4 , and Shirley Ho5
1University of Tokyo, Japan, 2Tohoku University, Japan, 3University of Notre Dame, USA
4Kobe University, Japan, 5CCA, Flatiron Institute, USA

Surrogate Modeling for 
Computationally Expensive 

Simulations of Supernovae in 
High-Resolution Galaxy 

Simulations

Credit:
ESO/PESSTO/S. Smartt
Butusova Elena/Shutterstock.com
Art tools design/Shutterstock.com
anttoniart/Shutterstock.com
Gorodenkoff/Shutterstock.comCPS Seminar2023/10/19



1

Self-Introduction

Keiya Hirashima
•PhD student (the University of Tokyo)
•Research interest

• Galaxy formation and evolution
• Surrogate modeling for SN feedback with machine learning

•Some other projects…
• Surrogate modeling with GNNs/transformers
• Foundation model to describe the morphology of galaxies
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Outline

• Introduction: Overheads of galaxy simulations

• #1 A Hamiltonian splitting with deep learning

• #2 Surrogate modeling for the SN feedback

• Summary



ASURA-FDPS (N-body/SPH)
(based on Saitoh+08,09, Iwasawa+16 )
• Gravity + Hydrodynamics

• (DISPH; saitoh+13)
• Radiative Cooling/Heating (Ferland+17)
• Star formation (Hirai in prep.)
• Feedback

• SNe Ia/IIb, AGB, Neutron star merger
• Chemical evolution (CELib; Saitoh17)
• FUV background

• About to accomplish star-by-
star simulations… but…
• Previous work [2, 3]： 10!𝑀⊙

• Our goal (ASURA-FDPS)： 10𝑀⊙3

Galaxy Simulations Using SPH*

*SPH: Smoothed Particle Hydrodynamics
[1] https://www.youtube.com/watch?v=DDsUXRfs6ZQ
[2] Applebaum et al. (2021)
[3] Grand et al. (2021)

The formation of the galaxy [1].

<102 kpc

10 ~ 102 pc
~102 yr

~108 yr

https://www.youtube.com/watch?v=DDsUXRfs6ZQ
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Overheads in Galaxy Formation Simulations

Strong Scaling of GADGET-4
(Based on Figure 63 in Springel et al. 2021)

• Due to small timescale regions (e.g. SNe), 
the communication overhead occurs.

• Even the latest supercomputers cannot 
solve it (e.g., Fugaku has ~106 CPU cores).

GOOD

BAD

The Number of CPU cores

The parallelization efficiency saturates at ~103 CPU cores.
e.g., 
• GADGET-4(Springel+21)
• DC Justice League (Applebaum+21)
• Fire-2(Hopkins+18)
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Communication Overheads

Credit: NAOJ

𝒑𝟏𝒑𝟐

𝒑𝟑

𝒑𝟒

The integration with short timesteps needs a huge number 
of calculations and inter-node communications.

Idle time

Calculation cost of 1 global timestep (∆𝑡~10! yr)

𝒑𝟏
𝒑𝟐

𝒑𝟑

𝒑𝟒 SN (∆𝑡~10! yr)
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How can I avoid the bottleneck?
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Hamiltonian Splitting Method

Use multiple integration methods 
depending on the properties of the regions.

(Fujii et al. 2007; Saitoh et al. 2010; Pelupessy et al. 2012)

• Long timescale regions require 
the global (long) timestep.
• Short timescale regions (SNe) 
require short timesteps with the 
gravitational perturbations.

credit:[Upper: NASA/JPL-Caltech/ESO/R. Hurt, 
Lower-Right: NAOJ, Lower-Left: ESO/M. Kornmesser]

Perturbation

<102 kpc

10 ~ 102 pc



MPI_COMM_WORLD
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Avoid Communication Overheads
𝒑𝟏𝒑𝟐

𝒑𝟑

𝒑𝟒

𝒑𝟏𝒑𝟐
𝒑𝟑

𝒑𝟒

Idle time

𝒑𝟏
𝒑𝟐

𝒑𝟑

𝒑𝟒

MPI_COMM_WORLD
MPI_COMM_GLOBAL
(>104 CPU cores)

MPI_COMM_SN
(<103 CPU cores)

𝒑𝟐

𝒑𝟑

𝒑𝟏

𝒑𝟒

Idle time
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Avoid Communication Overheads
𝒑𝟏𝒑𝟐

𝒑𝟑

𝒑𝟒

𝒑𝟏𝒑𝟐
𝒑𝟑

𝒑𝟒

MPI_COMM_WORLD
MPI_COMM_GLOBAL
(>104 CPU cores)

MPI_COMM_SN
(<103 CPU cores)

𝒑𝟐

𝒑𝟑

𝒑𝟏

𝒑𝟒

Idle time

• Need to know which particles will have small 
timesteps in advance

• Predict the boundaries of the shells using deep 
learning



Temperature 10 [K]
Mean ambient density 40 ~ 60 [cm-3]

Input energy 1051 [erg]
Total mass 106 [M⨀]

Mass of a gas particle 1 [M⨀]
Softening parameter 0.5 [pc]

SN simulations in inhomogeneous turbulent clouds
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Training Data (3D cartesian grids)

Interpolation using 

SPH summation

323 voxels (density distribution)

60 pc

60 pc
60 pc(the equivalent resolution for our galaxy simulations)
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Deep Learning Model
• Memory-In-Memory Network (Wang et al. 2018)

• Generates 2D video in the future
• Convolutional Neural Networks (CNNs)
• Convolution is the operation like inner products.

• Increased the dimensionality: 2D à 3D
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Let’s learn the SN explosions with kernels!

0 1 0
1 -4 1
0 1 0

⨂ =

Example. Edge detection

Learnable parameters 
(Convolutional Neural Networks)
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Forecast the Evolution of the SN Shells in Density 

Cross section view
Left: Simulation data (ground truth)
Right: Prediction by the 3D-MIM

• Taking the initial distribution, the ML model can forecast the 
spatiotemporal change in density due to a SN explosion.
• Duration: 0.2 Myr

𝑅(𝑡) ∝
𝐸&
𝜌&

'/)
𝑡*/)

Hirashima et al. 2023, accepted
arXiv:2302.00026

60 pc

https://arxiv.org/abs/2302.00026
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Detect particles with small ∆𝑡

• The continuous region where the density becomes <90% 
is selected as the target region.
• Calculate the selected particles locally.

•With image processing, select (d) pale-gray region using 
(a) Initial Condition and (c) prediction
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t=t0 yr t=t0 + 105 yr
The rest of the region in the galaxy
Δt ~105 yr

SN Δt = ~102 yr

To the further speed-up

Δt ~105 yr

Sub-grid models



We need 
more 
physics!!

17
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Training Data (3D cartesian grids)

• Mass resolution: 1M⨀

• Summation with the SPH kernel
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t=t0 yr t=t0 + 105 yr
SN Δt = ~102 yr

Simulations for SN feedback

Large number of calcs. and comms.

The rest of the region in the galaxy
Δt ~105 yr
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Physical
quantities

Unet

Interpolation 
with SPH 
summation

MCMC
(Gibbs Sampling)

t=t0 yr t=t0 + 105 yr

The rest of the region in the galaxy
Δt ~105 yr

SN Δt = ~102 yr

Surrogate modeling for SN feedback

U-Net (CNN-based)

Bypass with ML and MCMC 
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Prediction
Inhomogeneous shell emerges by the dense filament blocking.

10 pc
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Prediction #2
Dense region：Velocities are estimated at a lower values. 



Gibbs Sampling (2D)
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Representation by Gibbs Sampling

MCMC
(Gibbs Sampling)

3D cartesian grids of density
~ 3D probability density function

The particle distribution is sampled by a Markov chain Monte Carlo method.
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Physical
quantities

SPH kernel

t=t0 yr

t=t0 + 105 yr

ML + MCMC 

U-Net

Gibbs Sampling
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Validation
• Ground Truth: 1Msun sims（High-resolution）
• Baseline: 10 Msun sims（“Low”-resolution）
• High resolution for galaxy simulations, cannot resolve 
supernova feedback (Hu+16, Steinwandel+20, Hirashima+23)

• Compered total thermal energy and outer momentum of hot 
particles (<103 K) on test data (100 results of independent 
simulation)

“Low”-resolution High-resolution Our method
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Fidelity Evaluation in Thermal Energy

High-res. High-res.

Low-res. Ours

• Compered to the low-res. sims., our method can duplicate the 
thermal energy
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Fidelity Evaluation in Outer Momentum

High-res. High-res.

Low-res. Ours

• Almost similar to the low-res. sims.
• Need to get the bias removed
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Physical
quantities

SPH kernel

t=t0 yr

~106 yr

Experiment | Rerun the simulation  

U-Net

?
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Preliminary Restart Run from 0.1 Myr

DNS ML+MCMC
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To conclude

Hirashima et al. 2023, accepted 
for MNRAS

arXiv:2302.00026

Direct Numerical 
SimulationsHamiltonian SplittingSurrogate modeling

• Deterministic
• Expensive

• Stochastic
• Fast

https://arxiv.org/abs/2302.00026
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Accelerates 3D CNN Inference

SoftNeuro® [1] optimized 3D Unet for Fugaku!

1. https://arxiv.org/abs/2110.06037
2. https://www.morphoinc.com/

x19 FASTER!

TF (Desktop, OneDNN)
(16 cores / 32 threads)

TF (Fugaku)
(1 node / 48 cores)

Softneuro (Fugaku)
(1 node / 48 cores)

Elapsed time 710 [ms] 2820 [ms] 147 [ms]
CPU usage 36% 3.5% 68%

https://arxiv.org/abs/2110.06037
https://www.morphoinc.com/
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Summary and Future Work

Ø An approach for surrogating SN simulations with ML and MCMC
Ø Need more accurate predictions 

Ø try generative models?
Ø Need higher-res simulations

Ø Preparing for higher resolution (0.1 Msun) simulations
Ø Try particle-based models (e.g. Graph Neural Networks)

Thank You!!!!


