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* Variety of climate has been considered with climate
regime diagram -
— Budyko (1969), Sellers (1969), and others

— Infrared radiation is represented as
I =A+ BT

 Problems

— Effects of circulations of atmosphere
and ocean ST T T

— Influence of existence of Normalized Solar constant
the runaway greenhouse state Radiative-convective equilibrium model

 We consider simple system v (Nakajimagetal, 1992)
(straight forward extension 400 4 Komabayashi-ngersolllimit__ ___|
of Budyko-Sellers model)

— ocean planet (all surface is 300 - :
covered with ocean) Water vopor only

— Investigation with AGCM and 1 i |
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climate regime diagram
obtained by AGCM



* Energy Balance Model (EBM)

— Infrared radiation is calculated with result of Nakajima et al. (1992)

aT aT

a 2
CE =Q(1— a(x,xs))S(x) —I(T) + D 5(1 —x )a

 Atmospheric general circulation model: DCPAM

(https://www.gfd-dennou.org/library/dcpam/)
— Atmospheric constituent: water vapor, dry air
— Dynamical process : primitive equations
— Radiation process : grey radiation (Nakajima et al., 1992)
- Absorption coefficient: water vapor:k, = 0.01m?/kg, dry air:x, = 0.0m?/kg
— Turbulent mixing: Mellor and Yamada (1982), Louis et al. (1982)
— convection: Manabe et al. (1965), no cloud
— Surface: swamp ocean
— Resolution: T21L16 or T21L32

* Experimental steup

— Solar constant 1200-2000 W/m?2

— Planetary radius, surface pressure, planetary rotaion rate, ... are same
values of Earth’s
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* Branch structure is basically same as Budyko-

Sellers model

* |ce-free state branch changes because of
appearance of the runaway greenhouse state

2000
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Two branches of ice-free solutions
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* Two Branches of ice-free states are caused b
the existence of multiple solutions of vertica
one-dim model (Nakajima et al., 1992)



GCM regime diagram

Ishiwatari et al. (2021)
Regime diagram (ice-line latitude) Regime diagram (global mean temperature)
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e Branch structure is similar to EBM result

* |ce-free state branch changes because of
appearance of the runaway greenhouse state

* Partially ice-covered state with large ice cap
cannot be determined uniquely




GCM regime diagram(old version)

* Actually, the regli‘me diagram has been
updateof from Ishiwatari et al. (2007)

* Some problems including a serious bug were
discovered

Old version (Ishiwatari et al., 2007, retracted)
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Climate regime diagram
obtained by a coupled
model



+ Climate regime

Rose (2015)
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Atmosphere-ocean coupled model
e AGCM : DCPAM

(https://www.gfd-dennou.org/library/dcpam/)

Atmospheric constituent: water vapor, dry air
Dynamical process : primitive equations

Radiation process : grey radiation (Nakajima et al.,
1992)

Turbulent mixing: Mellor and Yamada (1982),
Louis et al. (1982)

Convection: Manabe et al. (1965), no cloud
Resolution: T21L16 or T21L32

e Ocean ciruculation model

— Turbulent mixing : Redi (1982), Gent and McWilliams

Dynamical process : axisymmetric hydrostatic
Boussinesq equations

(1990), Marotzke (1991)
Resolution : horizontal 3 degree, vertical 60 levels

e Seaice model

— Thermodynamical process : 3-layer model (Winton,

2000)
Horizontal transport: diffusion type
Resolution : horizontal 3 degree
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Experiment configuration

* Solar constant: 1000~1750 W/m?
 Atmospheric absorption coefficient

— Case with same configuration as Ishiwatari et al. (2021) :
water vapor : k, = 0.01m?/kg dry air : x, = 0.0m? /kg
— Case with large absorption coefficient
water vapor : k, = 0. 1m?/kg dry air : x, = 10~°m? /kg
(Based on Byrne and O’ Gorman (2013), Vallis et al. (2018) )
 Ocean model
— Dynamic ocean, 60m slab ocean, Swamp ocean

* Planetary parameters (Planetary radius, gravitational acceleration, ...): Same values with
Earth’s

* No seasonal change, no diurnal cahnge
* Surface albedo

— 0.5 (Ts below 263K), 0 (otherwise)
— Calculated with considering sea ice concentration
* Initial condition
— Basically, isothermal state (280 K)
— Calculated runaway greenhouse states, sonwball states, partially ice-covered state



Regime diagram for case with Ishiwatari et al. (2021)
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e Multiple kinds of solutions are obtained regardless of ocean

model
— Runaway greenhouse state, Snowball state,

Partially ice-covered state (Water belt state does not appear)
* Branch structures are almost independent of ocean model



Reason for indepence of branch structures on ocean model

e Meridionally 1-dim EBM (Sellers—type)
with ocean heat transport
d oT

0= Q(l — a(x,xs))S(x) — (A+BT)|+D a(l — xz)a + E,(x)

Solar radiation Infrared radiation Atmospheric heat transport Ocean heat flux
(x: sine—latitude, T: Temperature, Q: (Solar constant)/4, «: Albedo, F,(zx) = _27r1R2 88];]0,

S(x)=1+s2 P2(x) ) H,(z) = Uy(1 - 22)"
 Experiment setup
— D/B (heat transport coefficient/coefficient in infrared radiation)
* 0.1 (corresponds to Ishiwatari et al., 2021)
» 0.3 (North, 1975)
— Ocean heat flux is specified

 Determined with the result obtained
by coupled—model

* Latitude dependence : N=2
e Amplitude : 1[PW] (from result of dynamic ocean model)

Ocean heat flux (N=2)
o (normaliied so that
maximum value |
become 1 PW) |

l |
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Result of EBM
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B coefficien in infrared radiaion
is small,

change of ice-line latitude
is smaller for cases with
ocean heat transport

The reason why branch
shape is almost
independent of ocean
model is that the effect of
atmospheric heat
transport is weak than
cooling effect by infrared
radiation




Climate regime diagram with large absorption coefficient

Absorption coefficient: for vapor, k, = 0.1m?/kg  for dry air, k,, = 10~°>m? /kg
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* Climate regime diagram is obtained by
atmosphere-ocean coupled model with grey
radiation

e Cases with small absorption coefficient

— Solar constant dependence of branch structures is almost
independent of ocean model

— One kind of partially ice-covered state

e Cases with large absorption coefficient

— Branch structures are changes according to ocean model
— When ocean heat transport exist,

» Solar constant range for existence of partially ice—
covered states becomes narrower

* Another kind of partially ice—covered state appers:
water belt state



