Atmospheric dynamics of giant planets: New insights from the Juno mission

Yohai Kaspi Weizmann Institute of Science

Earth

1000 km

Jupiter

10000 km

Jupiter

- Orbit: 5.4 AU
- Equatorial radius: 71,000 km
- Rotation period :9.92 hours
- Oblateness:1/16 (Earth = 1/298)
- Mass: 318 Earth masses

Zonal wind m/s

Dynamical atmosphere

Molecular hydrogen

Metalic hydrogen ~

Juno mission goals:

- Deep dynamics
- Interior structure (core?)
- Formation and evolution
- Magnetic field
- Magnetosphere

Juno

Core?

- During the prime mission Juno orbited Jupiter every 53 days (34 orbits: July 2016 June 2021)
- Juno is now in a 34 day orbit (since Europa flyby in September 2022)
- Polar orbit with perijove drift of 1 degree northward
- Perijove distance is ~4000 km

Juno extended mission (since July 2021)

- During the prime mission Juno orbited Jupiter every 53 days (34 orbits: July 2016 June 2021)
- Juno is now in a 34 day orbit (since Europa flyby in September 2022)
- Polar orbit with perijove drift of 1 degree northward
- Perijove distance is ~4000 km

Juno's microwave measurements reveal an ammonia plume near the equator.

Bolton et al., 2017, Science

Adriani et al., 2018, Nature

Side view of the north pole

Jupiter's dynamical regimes

What sets the stability and location of the circumpolar cyclones?

Conservation of barotropic potential vorticity:

Relative vorticity Planetary vorticity

Gavriel and Kaspi, 2021, Nat. geo

What sets the stability and location of the circumpolar cyclones?

- Saturn has no equilibrium points and thus no circumpolar cyclones
- Jupiter has a stable equilibrium point at 84° N/S setting the location of the circumpolar cyclones

Gavriel and Kaspi, 2021, Nat. geo

What sets the stability and location of the circumpolar cyclones?

Stability analysis of a ring of cyclones reveals a maximum of 8 vortices in the north pole and 5-6 in the south pole.

- Saturn has no equilibrium points and thus no circumpolar cyclones
- Jupiter has a stable equilibrium point at 84° N/S setting the location of the circumpolar cyclones

Gavriel and Kaspi, 2021, Nat. geo

The circumpolar cyclones' temporal oscillations

Gavriel and Kaspi, 2022, GRL

The circumpolar cyclones' temporal oscillations

Gavriel and Kaspi, 2022, GRL

1112018

1an 2019

1412019

Jan 2020

1412017

1an 2018

The circumpolar cyclones' westward drift

The beta-drift secondary circulation

Gavriel and Kaspi, GRL, 2023

The beta-drift secondary circulation

Gavriel and Kaspi, GRL, 2023

Center of mass approach

Beta-plane simulation demosntreating the westward drift

Gavriel and Kaspi, GRL, 2023

Gavriel and Kaspi, GRL, 2023

Jupiter's dynamical regimes

The midlatitude jet-streams

- Eastward jets are driven by a momentum flux convergence
- Westward jets are driven by a momentum flux divergence

Earth has one Ferrel cell in each hemisphere, containing one (eddy driven) jet. Can we identify such Ferrel cells on Jupiter?

The midlatitude jet-streams

- Eastward jets are driven by a momentum flux convergence
- Westward jets are driven by a momentum flux divergence

Multiple Ferrel cells on Jupiter

The Juno gravity experiment

The measured gravity field

• Even gravity harmonics are close to the rigid body prediction.

less et al., 2018, Nature

The measured gravity field

- Even gravity harmonics are close to the rigid body prediction.
- Odd harmonics are large and must be a pure signature of dynamics.

less et al., 2018, Nature

The dynamical gravity signature

• Use thermal wind balance to relate between the flow and the density anomalies (gravity signal): $2\Omega \cdot \nabla(\overline{\rho}\overline{u}) = \nabla \rho' \times \overline{g}_0$

-100

100

Gravity harmonics resulting from extension inward of the cloud-level winds

- Assuming an e-folding depth for the cloud level winds
- Relating the wind profile to the density anomaly through thermal wind balance
- Using the dynamical density to calculate the gravity harmonics $J_n = -\frac{1}{a^n M} \hat{0} r^n P_n(q) r(r,q) d^3 r$

Gravity harmonics resulting from extension inward of the cloud-level winds

- Assuming an e-folding depth for the cloud level winds
- Relating the wind profile to the density anomaly through thermal wind balance
- Using the dynamical density to calculate the gravity harmonics $J_n = -\frac{1}{a^n M} \hat{0} r^n P_n(q) r(r,q) d^3 r$

The vertical and meridional structure of the flow

Allowing also the depth of the flow to vary with depth, and optimizing for the vertical profile:

Kaspi et al., 2018 Galanti and Kaspi, 2021

The high-degree gravity harmonics

- Constraining the gravity solution to be very small towards the poles, allows calculating the gravity harmonics to much higher degree.
- High correlation all the way to J35.
- J3, J5, J7 and J9 are part of a wavy pattern which continues to much higher degree.
- Projecting the winds inward radially does not match the measurements.

Where does the wavy pattern come from?

The source of the gravity signal

Gravity harmonic degree

The source of the gravity signal

Similar gravity measurements of Cassini at Saturn

The Cassini Grand finale (May-Aug 2017) made 6 gravity measurements, improving significantly the known gravity spectrum of Saturn

The deep flow structure inferred from gravity

- In blue: Optimal decay profile matching the gravity measurements.
- Winds on Jupiter extend to depth of ~3000km
- On Saturn the winds reach depth of ~9,000km.

Kaspi et al., 2020, Space Sci. Rev.

The deep flow structure inferred from gravity

- Electrical conductivity is expected to affect the flow in the semi-conducting region via Ohmic dissipation (Liu et al., 2008, Cao & Stevenson, 2017).
- In both planets, conductivity increases where the flow decays.

Kaspi et al., 2020, Space Sci. Rev.

The deep flow structure inferred from gravity

- Electrical conductivity is expected to affect the flow in the semi-conducting region via Ohmic dissipation (Liu et al., 2008, Cao & Stevenson, 2017).
- In both planets, conductivity increases where the flow decays.
- The depth inferred from gravity alone defines a tangent cylinder, out of which there is prograde flow.

How deep is the Great Red Spot?

Parisi et al. 2021, Science

Summary: Jupiter's dynamical regimes

The equatorial region

Duer et al., submitted

The relation between the domain depth and equatorial flow extent

The mechanism for equatorial superrotation

Mechanism for equatorial superrotation (weakly supercritical example)

Kaspi, 2008

Mechanism for equatorial superrotation (weakly supercritical example)

Equatorial superrotation in deep models

Tilted convection columns lead to eddy angular momentum flux perpendicular to the direction of the spin axis.

Summary

- Juno enabled better understating of the dynamical regimes of Jupiter's atmosphere
- Jupiter's north (south) pole has 8 (5) circumpolar cyclones, which are held stable due to a balance between the beta-drift and the vorticity gradient of the cyclones.
- Jupiter's midlatitudes feature 8 Ferrel cells in each hemisphere around the eddy-driven jets.
- Jupiter's gravity field is hemispherically (north-south) asymmetric: a pure signal of deep dynamics.
- This allowed determining that the depth of the cloud-level flows reach approximately 3000 km beneath the cloud level, which is the level of magnetic dissipation.
- Cassini results for Saturn indicate flows extending down to 9000 km, consistent in pressure with the depth on Jupiter and with MHD theory.
- GRS overflight gravity measurements indicate the GRS depth is <500 km.

Interior structure properties and core

Whal et al., GRL, 2017

Summary: Jupiter's dynamical regimes

Vertical flow profile combining gravity and magnetic field measurements

Statistical significance test for other wind profiles

Statistical significance test for other wind profiles

With high likelihood the meridional profile of the flow at depth does not vary from that at the cloud-level (mainly at low-latitudes)

Kaspi et al., 2018 Duer et al., 2020

How deep are the zonal winds?

