気候システムへの宇宙線の影響を探る

武蔵野美術大学 教養文化・学芸員課程研究室 宮原ひろ子 Contents

- ① 太陽活動の変動
- ② 太陽活動と気候変動をつなぐメカニズム
- ③ 太陽活動と気候変動の相関
- ④気象への影響の可能性
- ⑤ 古気候学的データに基づく宇宙線-気候変動の検証
- ⑥宇宙線が影響し得るエリア・高度はどこか?
- ⑦ 雲・再解析データから示唆されること

①太陽活動の変動

太陽活動の11年周期とその長期変動

太陽黒点の記録が示す数百年スケールの長期変動

ガリレオ・ガリレイらによる 望遠鏡の発明/黒点観測の開始

Hoyt & Schatten 1998

さらに過去の太陽活動を調べるには

 銀河宇宙線が大気中で生成する 放射性同位元素を手掛かりにする

太陽近傍の太陽風の様子

銀河宇宙線

さらに過去の太陽活動を調べるには

トラバーチン堆積物

過去1万年間の太陽活動変動

・太陽は約11年の周期に加えて数十~2000年スケールの長期変動を持つ

② 太陽活動と気候変動をつなぐメカニズム

太陽活動が変動すると…

http://www.zizco.jp/01sun/sun_basic.html

- 1. 太陽総放射量の増減 (主に白斑の増減による)
- 2. 太陽紫外線量の増減 (黒点周辺の磁場が強い領域からの放射)

3. 銀河宇宙線量の増減 (太陽風磁場強度の増減による)

太陽活動が変動すると…

Energetic Particle Precipitation

銀河宇宙線による大気のイオン化率の変動

気候への影響の3つの経路

太陽総放射量の影響(Bottom-up mechanism)

see e.g. Misios et al., 2019

太陽紫外線の影響(Top-down mechanism)

紫外線(SUV) → 成層圏オゾン生成・加熱

→ 赤道-極域の温度勾配

→ 大気循環(偏西風etc)

Kodera & Kuroda, 2002

• 太陽磁場・地磁気により遮られる銀河宇宙線の影響

銀河宇宙線(GCR) → 雲核形成 → 日傘効果

帯電影響 → 雲の発達・寿命

Friis-Christensen & Svensmark 1997; Tinsley, 1996

Possible contributions of GCRs on cloud micro-physics

cosmic ray (%)

③ 太陽活動と気候変動の相関

太陽活動と気候変動との相関を示す古気候学的データ

赤 緑線: 炭素14・ベリリウム10に基づく太陽活動度

黒線(Marine) : 海底⊐ア中の氷河砕石物の増減 = 氷山の南下 and/or 流出量の増大

Bond et al., Science, 2001

太陽活動と気候変動との相関を示す古気候学的データ

δ¹⁸0:石筍中の酸素同位体比(¹⁸0/¹⁶0)

= 降水量の指標

太陽活動と オマーンにおけるモンスーン活動との 数百年スケールでの一致

Neff et al., Nature, 2001

^{比較的最近の事例:} 太陽活動の度重なる低下が一因となった 小氷期

The Frozen Thames Link(1677) アブラハム・ホンディウス

- 全球平均としては0.5~0.7℃程度
- ・ 地域差が大きく、最大で2.5℃の寒冷化(日本を含む)
- 氷河の拡大、穀物の収穫量減、飢饉、ペストの流行

過去1200年間の京都の気温と太陽活動の相関

太陽活動極小期の発生時に 約2.5℃の気温低下

ヤマザクラ(Wikipediaより)

ヤマザクラの満開日から復元された 京都の3月の気温

④気象への影響の可能性

太陽活動が気象スケールでも影響を及ぼしている可能性

約27日周期での太陽の自転

太陽総放射量や 太陽紫外線のほか、 太陽風磁場や銀河宇宙線に周期的変動

~27日周期は、11年周期の極大で振幅が増大する

Solar max付近の時系列の例

雷活動にみられる太陽自転周期

乗鞍岳における雷活動 AD 1991-1992 and AD 1999-2001 (Muraki et al., 2005)

シューマン共鳴の観測で推察された 全球の雷活動AD2000 – 2002 (Sato et al., 2005)

イギリスの雷活動 AD2000 – 2005 (Scott et al., 2014)

いずれも、太陽活動極大期のみ 太陽自転周期が検出されている

日本の雷活動にみられる太陽自転周期

18~19世紀の古日記の雷記録から見つかった太陽自転周期

1. 八王子石川日記(農業日誌)

2. 弘前藩庁日記 (御国日記、江戸日記)

Miyahara et al., 2018

18~19世紀の古日記の雷記録から見つかった太陽自転周期

- 黒点数が150以上の年で、雷活動に太陽自転周期を検出。
- 黒点数の減少とともに、シグナルは弱化

Miyahara et al., 2018

⑤ 古気候学的データに基づく宇宙線-気候変動の検証

How to distinguish the cosmic ray impact?

• Monthly cycle (Forbush Decrease associated with solar flares)

Positive results (Kniveton , 2004; Svensmark, 2009; Kataoka 2010; Svensmark, 2021)
Negative results (Sloan & Wolfendale, 2008; Kristjánsson+, 2008; Calogovic+, 2010)

• 22-yr cycles of GCRs

(Miyahara+, 2008; Yamaguchi+, 2010)

• Geomagnetic events

(Kitaba et al., 2010; Ueno, Hyodo et al., 2019)

Astronomical scale (> ten million years)

- Impact of galactic arm crossing?? (Shaviv, 2003)
- Vertical oscillation of solar system in the galaxy (Medvedev & Melott, 2007)

銀河宇宙線の22年周期変動

※22年周期変動のパターンは、太陽活動度に依存

気候変動の太陽双極子磁場依存(22年周期変動)

⑥ 宇宙線が雲に影響し得るエリア・高度はどこか?

Possible contributions of GCRs on cloud micro-physics

cosmic ray (%)

宇宙線が影響し得るエリア・高度はどこか?

地磁気による銀河宇宙線の遮蔽の強さ

Vertical cutoff rigidity (GV) for Epoch 1980

イオン生成率

イオン生成率の 変動幅(11年周期)

Usoskin+2010 (from Dunne+2016)

 宇宙線によるイオン生成は 極域が一番多い

(特に対流圏の上層)

宇宙線が影響し得るエリア・高度はどこか?

 宇宙線によるイオン生成は 極域が一番多い
(特に対流圏の上層で多い)

② 一方で、雲核の素になる 生物起源ガス(硫酸やアンモニア) は低緯度の方が多い

Almeida et al., 2013

参考: CLOUD experiment @CERN

植物プランクトン \rightarrow DMS \rightarrow SO₂ \rightarrow H₂SO₄

森林起源のテルペン ^ス

海洋起源の有機物の分解 → アンモニア

宇宙線が影響し得るエリア・高度はどこか?

CLOUD experiment @ CERN

 宇宙線によるイオン生成は 極域が一番多い
(特に対流圏の上層で多い)

② 一方で、雲核の素になる 生物起源ガス(硫酸やアンモニア) は低緯度の方が多い

③ チャンバー実験によると、 気温が低い方がイオンによる 雲核生成促進が起こりやすい

(Kirkby et al., 2011)

ひとつの可能性: 低緯度域の積乱雲の中層~上層

(最大で16kmに届く)

 宇宙線によるイオン生成は 極域が一番多い
(特に対流圏の上層で多い)

 一方で、雲核の素になる 生物起源ガス(硫酸やアンモニア) は低緯度の方が多い

 ③ チャンバー実験によると
気温が低い方がイオンによる 雲核生成促進が起こりやすい

 ④ 3km以下は既存のエアロゾル が多いことからも中層以上が有利 (Koffi et al., 2016)

© Encyclopædia Britannica, Inc.

鍵になるのは低緯度域?

雲活動に27日周期が見られるエリア

Y. Takahashi et al., 2010

日本における雷の27日周期は 位相差がある=低緯度側ほど早い

Miyahara et al., 2017

⑦雲・再解析データから示唆されること

Material and Methods

• Outgoing Longwave Radiation (1 x 1 degree resolution) for 1979-2021

(Low OLR suggests presence of high-altitude clouds)

- Daily data -> Monthly percentage of days OLR is lower than threshold values (170~260 W/m²)
- Long-term trend was subtracted from the monthly series
- Data for 1991 1992 were excluded from the analyses
- Compared to the monthly neutron monitor data
- Correlations were obtained for January and August

(See Miyahara et al. (2023) for the details)

- Oulu + Climax (combined)
- Linearly detrended

Response of high altitude clouds to GCRs

August

Response of high altitude clouds to GCRs

(Miyahara et al., 2023)

Response of high altitude clouds to GCRs

January

Why land (coastal) areas?

 Deeper convections compared to oceans (promote the encounters between ions and aerosol precursors, lower cloud-top temperatures, fewer pre-existing aerosols)

Earth

- Aerosol precursors of both forest and marine origin
- Diurnal cycles (renewed cloud system prevents umbrella effect)

Mechanism

Nucleation -> increase of latent heat, reduced size of cloud droplet

Promotion of collision-coalescence -> increase of latent heat

→ invigoration/prolongation of deep convective clouds

Why August?

1月

Earth

(b)

ITCZ

FO

海面水温分布のGCRへの応答

La Niña conditions

Miyahara et al., 2023

- ・ GCRの変動に2~3年遅れて影響最大化
- 太平洋の東西勾配増大
- 11年サイクルでの偏差 : ~2 ℃

海面水温の東西勾配分布変化が 総放射量変動への応答であるという Misios et al. (2019) による 主張を否定できるか?

雪が海面温度に先行して変動 海面温度のTSIへの応答に矛盾 (次のスライド)

Possible mechanisms

従来の3つの説:

Bottom-up mechanism (TSI)

Top-down mechanism (SUV)

SUV → 成層圏オゾン生成・加熱
→ 赤道-極域の温度勾配
→ 大気循環(偏西風 etc.)

Svensmark hypothesis(GCR)

GCR → 海洋上の低層雲

新たに提案する説:

"Deep-convective-clouds-mediated" mechanism (GCR)

Miyahara et al., 2023

Summary

- Sun-climate connection may be mediated by deep convective clouds
- Areas susceptible to GCRs are seasonally variable
- Synchronized invigoration of convections over land results in the intensification of Walker circulation and the trade wind, resulting in the greater east-west gradient of sea surface temperatures
- Detailed mechanisms of GCR's impacts on cloud microphysics should be further investigated

