銀河形成シミュレーションで探る rプロセス元素に富んだ星の起源

平居悠(HIRAI, Yutaka) ノートルダム大学物理天文学科/東北大学天文学教室 日本学術振興会特別研究員-CPD(国際競争力強化研究員)

Yutaka Hirai, Timothy C. Beers, Masashi Chiba, Wako Aoki, Derek Shank, Takayuki R. Saitoh, Takashi Okamoto, Junichiro Makino, MNRAS, 517, 4856–4874 (2022)

How was the Milky Way formed?

Galactic Chemical Evolution

Supernovae

Elements

Star Formation

Remnants

ORIGINS OF THE **E**LEMENTS

Chemo-dynamically tagged groups —Possible dwarf galaxy origin of r-process enhanced stars

How can we extract the galaxy formation history from chemical abundances?

Code

ASURA Saitoh et al. (2008; 2009) N-body/smoothed particle hydrodynamics

Cooling/heating

Cloudy: Ferland et al. (2013)

Star formation

Okamoto et al. (2003)

Supernova feedback

Hopkins et al. (2018)

Metal diffusion

Shen et al. (2010); YH & Saitoh (2017)

Cosmological zoom-in simulation of a Milky Way-like galaxy

500 kpc

Stars and gas

Dark matter

Box size: (36 *h*⁻¹ Mpc)³

Total mass of the halo: $1.2 \times 10^{12} M_{sun}$

Cosmological parameters: Planck Collaboration (2016)

The Initial mass of one gas particle: $1.3 \times 10^4 M_{sun}$

Gravitational softening length: 80 pc

30 kpc

YH+TS, JM (2022)

MNRAS, 517, 4856

Simulated [Eu/Fe] vs. [Fe/H]

Star-to-star variations for [Eu/Fe] in [Fe/H] < -2

When were *r*-process enhanced (RPE) stars formed?

Over 90% of RPE ([Eu/Fe] > 0.7) stars are formed within 4 Gyr.

Where were RPE stars formed?

Over 90% of RPE stars with [Fe/H] < -2 are formed in dwarf galaxies accreted to the Milky Way.

How were RPE stars formed?

RPE stars with [Fe/H] < -2.5 are formed in low-mass dwarf galaxies largely enhanced in r-process elements.

How can we extract the galaxy formation history from chemical abundances?

R-process enhanced stars with [Fe/H] < -2.5 could be a relic of accreted dwarf galaxies.

What's next?

How were star clusters formed in the context of galaxy formation?

How can we extract the accretion histories of dwarf galaxies over 10 Gyr?

Star-by-star simulations for dwarf galaxies and star clusters

Star formation model

YH, Fujii, Saitoh 21 Fujii, Saitoh, Wang, YH+21 Fujii, Saitoh, YH, Wang+21

> Long range forces (Tree)

Short range forces (Direct integration)

© Michiko Fujii/NAOJ/4D2U

Project website: https://sites.google.com/g.ecc.u-tokyo.ac.jp/sirius-project/

Yutaka Hirai – yhirai2@nd.edu

Conclusions

- We perform a high-resolution cosmological zoom-in simulation of a Milky Way-like galaxy.
- Over 90% of r-II stars ([Eu/Fe] > 0.7) are formed within 4 Gyr from the Big Bang in dwarf galaxies accreted to the Milky Way at a later time.
- RPE stars with [Fe/H] < -2.5 are formed in lowmass dwarf galaxies enhanced in *r*-process elements.