CPSセミナー @ 2023.6.1, 神戸大学CPS

惑星形成の現場を アルマ電波望遠鏡で 探る

野村 英子 (国立天文台 科学研究部)

ギャップやリングなどの詳細構造が普遍的に存在する

5AUの空間分解能で原始惑星系円盤を観測! 惑星との重力相互作用の結果、円盤にギャップ形成? 非常に短いタイムスケールで惑星形成が起きた可能性

HL Tau円盤 vs. TW Hya円盤

年齢が十万-百万年のHL Tau円盤と三百万-千万年の TW Hya円盤で類似のギャップ構造が見られた →円盤内のギャップ構造は普遍的?

20天体中19天体で「構造」が検出:構造は普遍的 ⇔惑星形成との関連

多数の円盤の高解像度アルマ観測 LMA LP/DSHARP (Andrews et al. 2018)

https://almascience.nao.ac.jp/almadata/lp/DSHARP/

惑星による円盤内のギャップ形成

(Kanagawa et al. 2015)

数値流体シミュレーションをもとにギャップ付近の 放射強度分布を予測

周惑星円盤の形成

谷川, 大槻, 町田 (2011)

原始惑星系円盤内の周惑星円盤の直接観測

原始惑星系円盤中の点源のアルマ観測

(Tsukagoshi, Muto, HN et al. 2019)

天文単位スケールの電波点源をTW Hya円盤内に検出 海王星質量の惑星の1/3ヒル半径相当 @ R = 52 au 周惑星円盤 vs. 渦でのダスト集積? → 今後の光赤外線観測により解明

観測: 2016.10.6/12.6 & 2018.10.14 (ALMA cycle 4 & 6) Band 7, 空間分解能: 0.15" ~ 9au

惑星起源のガス構造のシミュレーション (Kanagawa, HN+ 2020) 面密度分布 $H_0 = 0.07, \alpha = 1 \times 10^{-4}$ 惑星とギャップ間の距離 1.050 $\Sigma_0 = 1 \times 10^{-3}$ 1.5 $M_{\rm p}/M_* = 1 \times 10^{-4}, H_0 = 0.1$ 1.0250.40**密度**₅(g/cm⁻²) 1.0 0.35 $\left[\Sigma_0 \, \left(R/R_0 \right)^{-1/2} ight]$ 1.0000.30 $0.5 \cdot$ $0.25 \overset{d}{/}_{-0.20} \overset{d}{/}$ 0.975 g/R_p 0.0 0.950 $-0.15 \overset{\text{des}}{\varkappa}$ -0.5 $\overrightarrow{\Sigma}$ 0.9250.10-1.0固 $\times 10^{-4}$ 0.050.900 $= 1 \times 10^{-3}$ -1.5 10°

惑星の位置とガス・ギャップの位置のずれは、 惑星が中心星方向に移動していると説明できる ずれの距離から乱流に制限がつく? α ~ 10⁻⁴-10⁻³

円盤半径 / 惑星軌道

1.0

1.5

1

0.5

0

 x/R_p

-1

0.00

 10^{-3}

 10^{-4}

乱流強度 α

 10^{-5}

2.0

→ 系外惑星大気観測へ

a: 固体のサイズ a: 小 → 摩擦力が強く、 ダストはガスと共に運動する

a: 中 → 固体とガスは異なる 運動をするが、固体の運動は ガス摩擦力の影響を受ける

a: 大 → ガス摩擦力の影響を あまり受けない

a: 固体のサイズ a: 小 → 摩擦力が強く、 ダストはガスと共に運動する

a: 中 → 固体とガスは異なる
 運動をするが、固体の運動は
 ガス摩擦力の影響を受ける

原始惑星系円盤中のダストとガスの分布

円盤中のガス、小さいダスト、大きいダストの分布が 異なる→中心星方向へのドリフトの結果? ⇔惑星形成の第一段階

ダスト分布の偏りの生成過程

大きなダストは圧力 バンプの中心方向に移動 (小さいダストは移動せず)

大きなダストがたまる

惑星によりガスギャップができると、 ダストはガスギャップの両側に移動 移動の度合いはダストのサイズに依存

(足利大・塚越崇氏のスライドより

原始惑星系円盤からのガス輝線の観測 ミリ波・サブミリ波 紫外線 H₂ Lyman-Werner CO, ¹³CO, C¹⁸O, C¹⁷O, ¹³C¹⁸O, band transitions ¹³C¹⁷O, HCO⁺, H¹³CO⁺, DCO⁺, **可視光** [OI] 6300A $HC^{18}O^+$, [CI], C₂H, C₂D, C-C₃H₂ 近赤外線 $H_2CO, HCOOH, CH_3OH,$ $H_2 v = 1-0 S(1), S(0),$ CH_3OCH_3 , CH_3OCHO , $CO \Delta v = 2, \Delta v = 1,$ HCN, $H^{13}CN$, DCN, $HC^{15}N$, H_2O , OH, HCN, C_2H_2 , CH_4 HNC, CN, $C^{15}N$, N_2H^+ , N_2D^+ , 中間赤外線 NO, HC_3N , CH_3CN , CH_2CN , $H_2 v = 0.0 S(1), S(2), S(4)$ $CS_{1}C^{34}S_{1}^{13}CS_{1}H_{2}S_{1}$ (Spitzer Space Telescope, JWST) (サブ)ミリ波 赤外線 遠赤外線 アルマ以前 [OI] 63um, 145um, CO, H_2O , CH⁺, HD, NH₃, etc. (Herschel Space Observatory) アルマ

円盤ガス質量の測定は非常に難しい

ダスト・ガス比 ≠ 一様 → ダスト放射 : ×

CO/H2比 ≠ 一様 → CO放射: ×

HD輝線 温度依存性:大 (現在観測装置なし)

これまでのガス質量の観測値は、大きな不定性を伴う

円盤ガス質量の観測:TW Hya 円盤

Credit: T.Yoshida, T.Tsukagoshi et al. –ALMA(ESO/NAOJ/NRAO)

太陽系に最も近い原始惑星系円盤(d⁶⁰ pc)
比較的年老いている(3-10 Myr)
Face-on(i⁵.8 deg)_(Teague+2019)

幅広いライン・ウイングの発見

ALMAアーカイブデータを合成:積分時間の合計:10.4 hrs

#2015.1.00686.S,2016.1.00629.S,2018.1.00980.S

12CO J=3-2

(Yoshida, HN+ 2022b)

幅広いライン・ウイングの発見

ALMAアーカイブデータを合成:積分時間の合計:10.4 hrs

#2015.1.00686.S,2016.1.00629.S,2018.1.00980.S

12CO J=3-2

- ・4 < |v| < 9 km/s を平均したビジビリティ → イメージング
- ・放射は空間的に0".1程度(キャビティの外)まで広がっている

太陽系内天体(タイタン)での観測例 タイタン大気のALMA観測 (Serigano + 2016, Molter + 2016)

輝線の圧力広がりを指標に、タイタン大気の 鉛直方向の温度分布を調べる

(Yoshida, HN+ 2022b)

円盤内縁のガス質量

ガス面密度分布

(Yoshida, HN+ 2022b)

[~]7 木星質量 @ r < 5 au 年齢[~]10 Myr の円盤に 大量のガスが存在!

円盤内縁のCO/H2比

観測を再現するには、CO/H2[~]10⁻⁶@r=5au COスノーラインの内側でもCOガス枯渇

より蒸発しにくい分子へ変化&H2O氷にトラップ? <u>CO</u>2 (Collings+ 2004)

円盤におけるCOガスの枯渇

CO/H2

(Bergner+2020, Zhang+2020)

速度構造から惑星の存在を示唆

(Pinte et al. 2018)

ケプラー回転運動からのずれを測定することにより、 ダスト放射にギャップのある位置に、惑星が 存在することを示唆

タイタン大気中のウィンドのALMA観測 **HNC**

HCN

(Lellouch + 2019)

原始惑星系円盤からのガス輝線の観測 ミリ波・サブミリ波 紫外線 H₂ Lyman-Werner CO, ¹³CO, C¹⁸O, C¹⁷O, ¹³C¹⁸O, band transitions ¹³C¹⁷O, HCO⁺, H¹³CO⁺, DCO⁺, **可視光** [OI] 6300A $HC^{18}O^+$, [CI], C₂H, C₂D, C-C₃H₂ 近赤外線 $H_2CO, HCOOH, CH_3OH,$ $H_2 v = 1-0 S(1), S(0),$ CH_3OCH_3 , CH_3OCHO , $CO \Delta v = 2, \Delta v = 1,$ HCN, $H^{13}CN$, DCN, $HC^{15}N$, H_2O , OH, HCN, C_2H_2 , CH_4 HNC, CN, $C^{15}N$, N_2H^+ , N_2D^+ , 中間赤外線 NO, HC_3N , CH_3CN , CH_2CN , $H_2 v = 0.0 S(1), S(2), S(4)$ $CS_{1}C^{34}S_{1}^{13}CS_{1}H_{2}S_{1}$ (Spitzer Space Telescope, JWST) (サブ)ミリ波 赤外線 遠赤外線 アルマ以前 [OI] 63um, 145um, CO, H_2O , CH⁺, HD, NH₃, etc. (Herschel Space Observatory) アルマ

これまでに観測された星間分子の一部

				псэн	псоосно	
HNC	H2CS	НСООН	CH3CN	СНЗССН	CH3C3N	HC9N
НСО	H2CN	CH2NH	CH3NC	CH3NH2	СНЗСООН	HC11N
OCS	HNCO	CH2CO	CH3SH	СНЗСНО	СН2СНСНО	C2H5CN
CH2	HNCS	NH2CN	NH2CHO	CH2CHCN	СН2ОНСНО	СНЗС4Н
C2H	СЗН	C4H	C5H	С6Н	H2C6	CH3C5N
C3	<i>с-</i> СЗН	c-C3H2	H2C4	c-C2H4O		СНЗОСНЗ
CO2	C3N	H2C3	HC3NH+	СН2СНОН		С2Н5ОН
C2O	C3O	CH2CN	C5N-	С6Н-		CH3CONH2
C2S	C3S	HCCNC				СНЗСОСНЗ
HCO+	CH3	HNCCC				OHCH2CH2OH
HOC+	C2H2	CH4				С2Н5ОСНО
HCS+	HOCO+	H2COH+			(馬谷つ)	С8Н-
	HCNH €4H -		\rightarrow	アニノ		NH2CH2COOH?
	HNC HCO OCS CH2 C2H C3 CO2 C2O C2S HCO+ HOC+ HOC+ HCS+	HNC H2CS HCO H2CN OCS HNCO CH2 HNCS C2H C3H C3 c-C3H C02 C3N C2O C3O C2S C3S HCO+ CH3 HOC+ C2H2 HCS+ HOCO+ HCNH@4H-	HNC H2CS HCOOH HCO H2CN CH2NH OCS HNCO CH2CO CH2 HNCS NH2CN C2H C3H C4H C3 c-C3H c-C3H2 C02 C3N H2C3 C2O C3O CH2CN C2O C3O CH2CN C2S C3S HCCNC HCO+ CH3 HNCCC HOC+ C2H2 CH4 HCS+ HOCO+ H2COH+	HNC H2CS HCOOH CH3CN HCO H2CN CH2NH CH3NC OCS HNCO CH2CO CH3SH CH2 HNCS NH2CN NH2CHO C2H C3H C4H C5H C3 c-C3H c-C3H2 H2C4 C02 C3N H2C3 HC3NH+ C2O C3O CH2CN C5N- C2S C3S HCCNC HCO+ CH3 HNCCC HOC+ C2H2 CH4 → HCS+ HOCO+ H2COH+ →	HNCH2CSHCOOHCH3CNCH3CCHHCOH2CNCH2NHCH3NCCH3NH2OCSHNCOCH2COCH3SHCH3CHOCH2HNCSNH2CNNH2CHOCH2CHCNC2HC3HC4HC5HC6HC3 c -C3H c -C3H2H2C4 c -C2H4OC02C3NH2C3HC3NH+CH2CHOHC2OC3OCH2CNC5N-C6H-C2SC3SHCCNCIIHCO+CH3HNCCCIIHCS+HOCO+H2COH+ $\longrightarrow \mathcal{PSS}$ HCNH@4H-III	HNCH2CSHCOOHCH3CNCH3CCHCH3C3NHCOH2CNCH2NHCH3NCCH3NH2CH3COOHOCSHNCOCH2COCH3SHCH3CHOCH2CHCHOCH2HNCSNH2CNNH2CHOCH2CHCNCH2OHCHOC2HC3HC4HC5HC6HH2C6C3c-C3Hc-C3H2H2C4c-C2H4OC02C3NH2C3HC3NH+CH2CHOHC20C30CH2CNC5N-C6H-C25C35HCCNCHCO+CH3HNCCCHCS+HOCO+H2COH+HCNH€4H- </td

2023年 1995年 2020年 1970年 1980年 ~50種 [→]~225種 ~290種 ~100種 ~10種

塵表面から熱的に蒸発した有機分子の観測

複雑な有機分子は、ダストの分布と相関?

原始惑星系円盤からのガス輝線の観測 ミリ波・サブミリ波 紫外線 H₂ Lyman-Werner CO, ¹³CO, C¹⁸O, C¹⁷O, ¹³C¹⁸O, band transitions ¹³C¹⁷O, HCO⁺, H¹³CO⁺, DCO⁺, **可視光** [OI] 6300A $HC^{18}O^+$, [CI], C₂H, C₂D, C-C₃H₂ 近赤外線 $H_2CO, HCOOH, CH_3OH,$ $H_2 v = 1-0 S(1), S(0),$ CH_3OCH_3 , CH_3OCHO , $CO \Delta v = 2, \Delta v = 1,$ HCN, $H^{13}CN$, DCN, $HC^{15}N$, H_2O , OH, HCN, C_2H_2 , CH_4 HNC, CN, $C^{15}N$, N_2H^+ , N_2D^+ , 中間赤外線 NO, HC_3N , CH_3CN , CH_2CN , $H_2 v = 0.0 S(1), S(2), S(4)$ $CS_{1}C^{34}S_{1}^{13}CS_{1}H_{2}S_{1}$ (Spitzer Space Telescope, JWST) (サブ)ミリ波 赤外線 遠赤外線 アルマ以前 [OI] 63um, 145um, CO, H_2O , CH⁺, HD, NH₃, etc. (Herschel Space Observatory) アルマ

同位体比の観測により、物質進化を探る

主な同位体濃縮過程 - 同位体交換反応: D, ¹³C 選択的光解離: ¹⁵N, ¹⁷O, ¹⁸O

press) PPVII, in 2023, З HN, Furuya et

Protostellar cores Disks Comets Meteorites

Planets

原始惑星系円盤における12C/13C比は?

12C/13C 比は、太陽系天体ではほぼ一様 星形成前後の分子雲コアではばらつきがある

円盤における ¹²CO/¹³CO 比の測定法?

¹²CO: 円盤では光学的に厚い → 同位体比の測定が困難

円盤における ¹²CO/¹³CO 比の測定法?

¹²CO: 円盤では光学的に厚い → 同位体比の測定が困難

光学的に薄い輝線のウイング部分を 利用して同位体比を測定

太陽系内天体(タイタン)での観測例

タイタン大気のALMA観測

(Serigano+ 2016, Molter+ 2016)

光学的に薄いライン・ウイングを用いて 同位体比を測定

¹²CO/¹³COとH¹²CN/H¹³CNの観測値は T~27Kで説明可

$$\frac{[H^{12}CN]}{[H^{13}CN]} \approx \frac{[^{12}C^+]}{[^{13}C^+]} = \exp\left(\frac{35 \ [K]}{T}\right) \frac{[^{12}CO]}{[^{13}CO]}$$

$^{12}CO + ^{13}C^+ \rightarrow ^{12}C^+ + ^{13}CO + 35 K$

R < 100 auで¹²CO/¹³CO比が低く H¹²CN/H¹³CN 比が高い

太陽系初期の酸素同位体異常の起源

(McKeegan+ 2011, Pontoppidan+ 2014)

選択的光解離の効果により同位体分別したOが H₂O氷になる→ ^{17,18}Oが豊富な氷ができる

炭素同位体濃縮のモデル計算 炭素同位体を含む化学反応ネットワーク計算 (Furuya+ 2011, 2022) 炭素同位体 在地口中 バマーキエロロ (三相モデ) ¹²CO + ¹³C+ → ¹²C+ + ¹³CO + 35 K

		気相			氷									
		С	HCN	СО	СО	CO ₂	H ₂ CO	CH ₃ OH	НСООН	CH ₄	C_2H_6	C ₃ H ₄	HCN	HNCO
A	X _{mol}	1.1(-9)	1.2(-8)	2.9(-6)	2.2(-5)	1.3(-6)	1.5(-5)	5.6(-5)	3.2(-9)	8.9(-7)	3.2(-8)	5.4(-8)	7.0(-8)	5.5(-8)
	¹² C/ ¹³ C	143	82	46	61	61	61	60	61	73	88	87	85	84
В	¹² C/ ¹³ C	148	67	48	61	58	61	60	61	75	83	64	74	80
C	$\mathbf{X}_{\mathrm{mol}}$	4.1(-17)	4.1(-13)	7.9(-15)	3.0(-7)	1.4(-10)	1.7(-7)	2.5(-7)	1.8(-14)	1.5(-7)	5.6(-9)	8.3(-8)	3.3(-6)	2.1(-10)
	¹² C/ ¹³ C	48	45	50	60	62	60	61	56	77	549	110	56	54

酸素を含む分子 (COから生成した分子) と炭素のみを含む分子 (C,C+から生成した分子)で 12C/13C 比が二極化

Ryuguサンプルに炭素同位体比の 二極化が見られるか?

(Yabuta + 2018, Noguchi + 2018)

		CP MMs (anhydrous)		Fluffy fine grained MMs (hydrous)				
Sample ID	D10IB009	D10IB356	D10IB004	D10IB178	D10IB163	D10IB017		
			T					
	GEMS,	livine, Low-Ca yroxene, Fe-rich ponite, Minor Mg-rich prentine, Magnesite						
Mineralogy	Olivine pyroxe							
Organic chemistry	Carbo: Aliphatic, Nitrile (CN) or N-heterocycles Abundant globules	COOH, Aliphatic ketone, COOH Chondritic IOM-like		-	Chondritic IOM-like	ketone, COOH Chondritic IOM-like		
lsotope	$\delta 15N = ~600\% - 1,000\% = ~8,000\% - 1,000\% = ~8,000\% - 1,0000\% = -8,000\% = -1,000\% = -1,0000\% = -1,0000\% = -1,0000\% = -1,0000\% = -1,000\% = -1,000\% = -1,000\% = -1,000\% = -1,000\% = -1,000\% = -1,000\% = -1,000\% = -1,000\% = -1,000\% = -1,000\% = -1,000\% = -1,000\% = -1,000\% = -1,000\% = -1,000\% = -1,00\% =$	_	δ15N = ~300‰ δD = normal	_	_	_		
Aqueous alteration	No	No	No	Weak	Weak	Moderate		

有機物の官能基に炭素同位体比の2極化がとりこまれ たものを、リュウグウ・サンプルに検出できるか?

Summary 原始惑星系円盤ダスト・ガスの高空間分解の観測 ギャップ・リング構造、周惑星円盤候補天体の発見 円盤内のダスト運動の観測的検証 円盤ガス輝線の圧力広がりの発見 10Myrの円盤の<5auに7M」のガスが存在 MRI dead zoneにおけるガス集積の兆候? COスノーライン内側におけるCOガス枯渇 円盤COガス枯渇問題 円盤における気相分子の塵表面への凍結と 塵表面反応 x ダスト進化で説明可? 円盤における有機分子と同位体分子 複雑な有機分子や稀少同位体分子のALMA観測 x 同位体化学反応計算x リュウグウサンプル → 原始太陽系星雲の環境を探る