

Vertical-Wind-Induced Cloud Opacity Variation in Low Latitudes Simulated by a Venus GCM

Hiroki Karyu¹, Takeshi Kuroda¹, Kazunari Itoh¹, Akira Nitta¹, Kohei Ikeda², Masaru Yamamoto³, Norihiko Sugimoto^{4,5}, Naoki Terada¹, Yasumasa Kasaba^{1,6}, Masaaki Takahashi⁷, and Paul Hartogh⁸

¹Department of Geophysics, Tohoku University, Sendai, Japan, ² National Institute for Environmental Studies, Tsukuba, Japan, ³Research Institute for Applied Mechanics, Kyushu University, Kasuga, Japan, ⁴Department of Physics, Keio University, Yokohama, Japan, ⁵Research and Education Center for Natural Sciences, Keio University, Yokohama, Japan, ⁶Planetary Plasma and Atmospheric Research Center, Tohoku University, Sendai, Japan, ⁷Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan, ⁸Max Planck Institute for Solar System Research, Goettingen, Germany.

Importance of Atmospheric Wave

Atmospheric wave is a key to understand dynamics and meteorology

However, atmospheric wave activities in the Venusian cloud layer are not well understood due to the difficulty of continuous observation

Cloud morphology can be used as a diagnostic tool of atmospheric dynamics

- Crisp et al. (1991) found a zonalwavenumber-1 cloud opacity variation in low latitudes
- The variation quasi-periodically moved westward and persisted for a few weeks
- Can a Kelvin wave explain the observed cloud variation?

Setup of the GCM

Venus General Circulation Model (GCM) used in this study

- Dynamical core is based on CCSR/NIES GCM (Numaguti et al., 1995), which is also applied to a Mars GCM (Kuroda et al., 2005)
- Resolution: T42 (128 x 64 grids), 52 vertical layers (0~95 km)
- Dynamical settings are taken from Yamamoto et al. (2019, 2021) \rightarrow Wind and thermal structures are identical to Yamamoto et al.
- Topography is not included
- A radiative transfer scheme is taken from Ikeda (2011)
- Cloud physics parameterization including Mode 1~3
- \rightarrow condensation/evaporation, sedimentation
- Simple chemistry that represents H₂SO₄ cycle

Dynamical settings

Parameter	Value		
Planet radius	6051.848 km		
Gravity acceleration	8.87 m s ⁻²		
Planetary rotation period	243 Earth days		
Length of solar day	117 Earth days		
Gas constant	191.4 J kg ⁻¹ K ⁻¹		
Solar constant	2607 W m ⁻²		
Specific heat at the constant pressure	8.6 – 10.9 × 10 ² J kg ⁻¹ K ⁻¹		
Surface drag coefficient	4 × 10 ⁻³		
Vertical eddy diffusion for momentum and heat	0.8 m ² s ⁻¹		
Vertical eddy diffusion for tracers	0.2 – 4 m ² s ⁻¹		

The rotation setting is the opposite of the actual Venus in the present study (SR is prograde)

Cloud formations

Cloud production

- 1. H₂SO₄ formation by simple chemical reactions
- 2. Condensation is determined by the saturation vapor pressure of H_2SO_4
- 3. The liquid H_2SO_4 and H_2O (75% H_2SO_4) form cloud droplets, and the particle sizes are determined by a priori size ratio (right fig.) (Haus and Arnold, 2010)

(Particle size evolution is not calculated)

 ρ_n : particle density, r: radius,

from Kasten (1968)

 λ : mean free path, μ : viscosity, *A*, *B*, *C*: experimental parameters

Cloud sedimentation

Stokes velocity

$$\begin{split} w_{sed} &= \frac{2\rho_p gr^2}{9\mu} \Big[1 + \frac{\lambda}{r} \Big(A + Bexp\left\{ -\frac{Cr}{\lambda} \right\} \Big) \Big] \,, \\ F_{sed} &= -q_i w_{sed} \,, \end{split}$$

Mode	1	2	2'	3
Radius (µm)	0.49	1.18	1.40	3.65
Velocity (m/day)	~5	~25	~50	~400

Implemented chemical reactions

Chemical reactions (shown in the table below)

- SO₂: linear relaxation to the reference profile (right fig.) following Marcq and Lebonnois (2013)
- O: fixed to a reference profile which is proportional to solar zenith angle (representing photochemistry)
- CO: fixed
- SO₃, H₂SO₄, H₂O: calculated

Reaction	Reaction coefficient
$SO_2 + O + M \rightarrow SO_3 + M$	$k_1 = 5 \times 10^{-22} T^{-3} \exp\left(-\frac{2400}{T}\right)$
$SO_3 + H_2O + H_2O \rightarrow H_2SO_4 + H_2O$	$k_2 = 2.3 \times 10^{-43} T \exp\left(\frac{6540}{T}\right)$
$H_2SO_4 + H_2O \rightarrow SO_3 + H_2O + H_2O$	$k_3 = 7 \times 10^{-14} \exp\left(-\frac{5170}{T}\right)$
$SO_3 + CO \rightarrow SO_2 + CO_2$	$k_4 = 10^{-11} \exp\left(-\frac{13000}{T}\right)$

Initial vertical profiles

Zonal mean wind and thermals structure

- Atmospheric Superrotation
- Hadley-like circulations

- Consistent with recent observations (Ando et al. 2020)
- Low static stability in the cloud layer

Those structures are similar to Yamamoto et al. (2021)

Zonal mean cloud structure

8

Cloud variation and an atmospheric wave

9

- A zonal-wavenumber-1 Kelvin wave with a planet-circling period of 7.1 days is found in the equatorial region
- Cumulative Optical Depth (COD) variation is caused by the Kelvin wave
- \rightarrow Similar to the observed opacity variation (Crisp et al., 1991)

We performed composite analysis to highlight the variation related to the Kelvin wave to investigate the variation mechanism 10

Planetary-scale Cloud Variation

- Mass loading (ML) changing rate by temperature: ~0.8 [mg/day] (calculated with p_{sat} change by $\partial T/\partial t$)
- ML changing rate by vertical wind: ~2.5 [mg/day] (calculated with p_{sat} vertical gradient and vertical wind)
- \rightarrow Vertical wind is the leading cause of the periodic cloud variation

Comparison with Ando et al. (2021)

12

- The simulated stability is lower than Ando et al. (2021)
 - \rightarrow smaller temperature amplitude and larger vertical wind amplitude
 - \rightarrow Cloud variation is controlled by vertical wind

- The difference may be attributed to temperature calculation methods \rightarrow Newtonian cooling (Ando et al.) or Radiative transfer (This study)

Implication for Cloud Morphology

Zonal-wavenumber-1 cloud marking

 Rotation period (7.1 day) is larger than the observation (4.9 ± 0.5 day) because our model underestimates zonal wind speed in the cloud layer

 \rightarrow Providing the zonal wind speed is the same as the observation, the rotation period agrees with the observation (4.2~5.1 days)

- COD variation associated with the Kelvin wave is 15% of total variation

 \rightarrow Consistent with 10~25% reported by the past observation (Crisp et al., 1991)

13

The observed variation can be explained by a Kelvin wave

Conclusions

- We reproduced cloud top and bottom structure consistent with the observation
- We reproduced cloud variation consistent with the observation by including Mode 3 particles
- The cloud variation is coupled with a zonal-wavenumber-1 Kelvin wave
- Kelvin wave vertical wind is essential for maintaining the periodic variation
- Radiative transfer may play an important role on determining the mechanism of cloud variation
- The reproduced cloud variation chrecteristics are in good agreement with the observed wavenumber-1 cloud marking
- \rightarrow the Kelvin wave can explain the cloud variation in low latitudes

This work has been published (JGR Planets): https://doi.org/10.1029/2022JE007595

References

- Ando, H., Imamura, T., Tellmann, S., Pätzold, M., Häusler, B., Sugimoto, N., et al. (2020b). https://doi.org/10.1038/s41598-020-59278-8
- Ando, H., Takagi, M., Sagawa, H., Sugimoto, N., Sekiguchi, M., & Matsuda, Y. (2021). https:// doi.org/10.1029/2020JE006781
- Barstow, J. K., Tsang, C. C. C., Wilson, C. F., Irwin, P. G. J., Taylor, F. W., McGouldrick, K., et al. (2012). https://doi.org/10.1016/j.icarus.2011.05.018
- Crisp, D., McMuldroch, S., Stephens, S. K., Sinton, W. M., Ragent, B., Hodapp, K. W., et al. (1991). https://doi.org/10.1126/science.253.5027.1538
- Grinspoon, D. H., Pollack, J. B., Sitton, B. R., Carlson, R. W., Kamp, L. W., Baines, K. H., et al. (1993). https://doi.org/10.1016/0032-0633(93)90034-Y
- Haus, R., Kappel, D., & Arnold, G. (2014). https://doi.org/10.1016/j.icarus.2014.01.020
- Hide R. (1969). https://doi.org/10.1175/1520-0469(1969)026<0841:DOTAOT>2.0.CO;2
- Horinouchi, T., Hayashi, Y.-Y., Watanabe, S., Yamada, M., Yamazaki, A., Kouyama, T., et al. (2020). https://doi.org/10.1126/science.aaz4439
- Ikeda, K. (2011). (PhD thesis). The University of Tokyo.
- Kasten, F. (1968). https://doi.org/10.1175/1520-0450(1968)007<0944:FSOAP>2.0.CO;2
- Knollenberg, R. G., & Hunten, D. M. (1980). https://doi.org/10.1029/JA085iA13p08039
- Krasnopolsky, V. A. (2012). https://doi.org/10.1016/j. icarus.2011.11.012
- Krasnopolsky, V. A. (2013). https://doi.org/10.1016/j.icarus.2013.04.026
- Machado, P., Widemann, T., Peralta, J., Gilli, G., Espadinha, D., Silva, J. E., et al. (2021). https://doi.org/10.3390/atmos12040506
- Marcq, E., & Lebonnois, S. (2013). https://doi.org/10.1002/jgre.20146
- Numaguti, A., Takahashi M., Nakajima T., & Sumi A. (1995). Matsuno, Ed., Center for Climate System Research, 1–27.
- Peralta, J., Navarro, T., Vun, C. W., Sánchez-Lavega, A., McGouldrick, K., Horinouchi, T., et al. (2020). https://doi.org/10.1029/2020GL087221
- Takagi, M., Ando, H., Sugimoto, N., & Matsuda, Y. (2022). https://doi.org/10.1029/2021JE007164
- Titov, D. V., Ignatiev, N. I., McGouldrick, K., Wilquet, V., & Wilson, C. F. (2018). https://doi.org/10.1007/s11214-018-0552-z
- Yamamoto, M., Ikeda, K., Takahashi, M., & Horinouchi, T. (2019). Solar-locked and geographical atmospheric structures inferred from a Venus general circulation model with radiative transfer. Icarus, 321, 232-250. https://doi.org/10.1016/j.icarus.2018.11.015
- Yamamoto, M., Ikeda, K., & Takahashi, M. (2021). Atmospheric response to high-resolution topographical and radiative forcings in a general circulation model of Venus: Time-mean structures of waves and variances. Icarus, 355, 114154. https://doi.org/10.1016/j.icarus.2020.114154