京都大学 大学院理学研究科 宇宙物理学教室 佐々木貴教

CPSセミナー@Zoom 2022/10/07

巨大天体衝突による 天王衛星形成

- 起:太陽の周りを横倒しで回る天王星系 Slattery et al., *Icarus* (1992), Kegerreis et al., *ApJ* (2018)

Ishizawa, <u>Sasaki</u> & Hosono, *ApJ* (2019)

- 転:天王星周囲に形成された円盤は進化する! Ida, Ueta, <u>Sasaki</u> & Ishizawa, *Nature Astronomy* (2020)
- Kihara, <u>Sasaki</u> & Ida, to be submitted

本日の内容

承:巨大天体衝突で天王星の衛星は作れるか?

結:新しい天王星衛星形成シナリオの完成(?)

太陽系の惑星の自転

Canup & Ward (2006)

天王星衛星系の形成メカニズム(1)

Crida & Charnoz (2012)

天王星衛星系の形成メカニズム (2)

巨大天体衝突で天王星系を傾ける

Giant impact simulation (SPH; N=8,000)

Slattery et al. (1992)

Co-accretion + giant impact concept Morbidelli et al. (2012)

Salmon & Canup (2022)

N = 100,000-1,000,000

巨大天体衝突計算(高解像度)

Kegerreis et al. (2018)

- 起:太陽の周りを横倒しで回る天王星系 Slattery et al., *Icarus* (1992), Kegerreis et al., *ApJ* (2018)

Ishizawa, <u>Sasaki</u> & Hosono, *ApJ* (2019)

- 転:天王星周囲に形成された円盤は進化する! Ida, Ueta, <u>Sasaki</u> & Ishizawa, *Nature Astronomy* (2020)
- Kihara, <u>Sasaki</u> & Ida, to be submitted

本日の内容

承:巨大天体衝突で天王星の衛星は作れるか?

結:新しい天王星衛星形成シナリオの完成(?)

巨大天体衝突による天王星衛星形成シナリオ

Ishizawa et al. (2019)

Method (N-body simulation)

- Equation of motion : $\frac{d^2 r_i}{dt^2} = -\sum_{i \neq i} Gm_j \frac{r_i r_j}{|r_i r_j|^3}$
- Number of disk particles : N_{disk} = 10,000 lacksquare
- **Collisions** are moderately inelastic, and **mergers** \bullet occur if the Jacobi energy after the collision is negative (e.g., Kokubo et al., 2000)
- Using 4th Hermite scheme and Leap Frog \bullet method for the numerical time integration
- Using FDPS for speeding up calculations

(Framework for Developing Particle Simulator; Iwasawa et al., 2016)

Surface density of a circumplanetary disk generated by a GI is assumed to have a power-low distribution

 \bullet

Semi-

These disk models have **negative gradients** directly inferred from the results of the SPH simulations (Kegerreis et al., 2018)

天王星衛星形成のN体シミュレーション

Disk models with negative gradient

- Disk size a $\rightarrow R_U < a < 25R_U$
- Disk mass M_{disk} \rightarrow Several times M_{tot} (the total satellite mass)
- Surface density $\Sigma(a) \propto a^{-q} \rightarrow$ The power-index -q is varied as a parameter

$\sum \alpha a^{-q}$		Disk1	Disk2	Disk3	Disk4	Disk5	Di	
dick		M _{disk}	4M _{tot}	3M _{tot}	3M _{tot}	4M _{tot}	3M _{tot}	10
UISK		q	2.15	1.50	1.95	1.95	3.0	2
major axis	25Ru				1	1	1	

Ishizawa et al. (2019)

潮汐による軌道進化

Corotation radius : the orbital radius where a satellite has an angular velocity equal to a spin angular velocity of a planet

 $\Omega = \omega(a) \rightarrow a = r_c$ Planet

- Inside
- Outside : $\Omega > \omega$, recieving positive torque

Orbital growth

The corotation radius of Uranus $r_c \sim 3.3 R_{\cup}$

議論

A satellite's semi-major axis evolves according to

$$\begin{aligned} \frac{\mathrm{d}a_{\mathrm{s}}}{\mathrm{d}t} &= \mathrm{sgn}(a_{\mathrm{s}} - r_{\mathrm{c}}) \frac{3k_{2\mathrm{p}}M_{\mathrm{s}}G^{1/2}R_{\mathrm{p}}^{5}}{Q_{\mathrm{p}}M_{\mathrm{p}}^{1/2}a_{\mathrm{s}}^{11/2}} \quad \text{(Charr}\\ k_{2\mathrm{p}} &= 0.104 \qquad \text{(Gavrilov and Zharkov 1977)}\\ Q_{\mathrm{p}} &= 11,000 \quad \text{(Tittemore and Wisdom 1989)} \end{aligned}$$

The corotation radius of Uranus $V_c \sim 3.3 R_U$

- Inner satellites fall into Uranus or move outward
- Satellites in the middle merge each other
- Outer satellites (>10RU) remain in the almost same orbits

:衛星の潮汐軌道進化を考慮する

Ishizawa et al. (2019)

リングからの内側衛星の形成可能性

Ishizawa et al. (2019)

- 起:太陽の周りを横倒しで回る天王星系 Slattery et al., *Icarus* (1992), Kegerreis et al., *ApJ* (2018)

Ishizawa, <u>Sasaki</u> & Hosono, *ApJ* (2019)

- 転:天王星周囲に形成された円盤は進化する! Ida, Ueta, <u>Sasaki</u> & Ishizawa, *Nature Astronomy* (2020)
- Kihara, <u>Sasaki</u> & Ida, to be submitted

本日の内容

承:巨大天体衝突で天王星の衛星は作れるか?

結:新しい天王星衛星形成シナリオの完成(?)

周天王星円盤の進化を考える必要がある

An impact generates a gas disk of H/He and vaporized H₂O and rock

Viscous diffusion and radiative cooling of the gas disk

Ice condensates when T_{disk} falls bellow the freezing point of H₂O

A disk of ice has more mass on the outer side

• Viscosity v (Shakura & Sunyaev 1973) a is a constant parameter to represent the turbulence strength

国盤進化モデル

 $\nu \sim \alpha c_s^2 \Omega^{-1}$

$$T \simeq \left(\frac{9 \, G M_{\rm U} \Sigma_{\rm g} \nu}{8 \, \sigma r^3}\right)^{1/4}$$

$$\frac{\partial \Sigma_{\rm g}}{\partial t} - \frac{1}{r} \frac{\partial}{\partial r} \left[3r^{1/2} \frac{\partial}{\partial r} (\Sigma_{\rm g} \nu r^{1/2}) \right] = 0$$

日盤内での氷の凝縮

Ida et al. (2020)

 $M_{\rm ice} \simeq \int_{r_{\rm U}}^{r_{\rm max}} 2\pi r \Sigma_{\rm ice} dr \simeq 0.58 \times 10$, r_U l r

$$\int^{-4} \beta^{1/8} \gamma_{03} \left(\sqrt{\frac{\langle r_{\rm d,imp} \rangle}{12r_{\rm U}}} \right) \int^{-5/4} \left(\frac{M_{\rm d,imp}}{r_{\rm max}} 2 \sqrt{\frac{M_{\rm d,imp}}{r_{\rm 0}^{-2} M_{\rm U}}} \right)^{7/8} 0 \frac{58}{58} \times 10^{-4}$$
Ida et al. (2)

天王星衛星形成のN体シミュレーション

(改)

Ida et al. (2020)

議論
・
各種
タイム
ス
ゲールの
比較 $\frac{11/4}{r_{\text{II}}}$

Drift timescale of icy particles due to gas drag:

Growth timescale of 4dy particles: $t_{grow} \simeq 1 \left(\frac{St}{1}\right)$

Type-I migration timescale of a satellite: t_{mig}

 $c_{\rm s} < v_{\rm K}, \ \alpha \ll \widetilde{1}, v_{\rm r} \widetilde{\operatorname{St}} \ 24 \ 4_{\rm K} \ {\rm St} \ \widetilde{}_{r}$

 $\int \left(\frac{\langle r_{\rm d,imp} \rangle}{10^{-2} M_{\rm U}} \right)^2 \left(\frac{\langle r_{\rm d,imp} \rangle}{240 \, \rm K} \right)^{-1/2} \left(\frac{1}{400 \, \rm K} \right)^2 \left(\frac{\gamma}{r_{\rm U}} \right)^2 \left(\frac{\gamma}{r_{\rm U}}$

$$t_{\rm drift} \simeq \frac{r}{\nu_{\rm r}} \simeq \frac{r}{2\eta} \frac{1 + {\rm St}^2}{v_{\rm K}} \simeq 0.5 \left(\frac{c_{\rm s}}{\nu_{\rm K}}\right)^{-2} \frac{1 + {\rm St}^2}{{\rm St}} \Omega$$

$$\frac{\delta t + \alpha}{10^{-4}} \int^{-1/2} \left(\frac{\gamma}{0.3}\right)^{-1} \left(\frac{\alpha}{10^{-3}}\right) \left(\frac{T_{ice}}{240 \text{ K}}\right)^{\frac{1}{4}} \left(\frac{f^{2}}{r_{U}}\right)^{\frac{1}{6}^{3/4}} \left(\frac{f^{2}}{r_{U}}\right)^{\frac{1}{6}^{3/4}} \left(\frac{\eta}{240 \text{ K}}\right)^{\frac{1}{6}^{\frac{1}{4}}} \left(\frac{f^{2}}{r_{U}}\right)^{\frac{1}{6}^{\frac{3}{4}}} \left(\frac{f^{2}}{r_{U}}\right)^{\frac{1}{6}} \left(\frac{f^{2}}{r_{U}}\right)^{\frac{1}{6}}$$

8⁺ • • • •

- 起:太陽の周りを横倒しで回る天王星系 Slattery et al., *Icarus* (1992), Kegerreis et al., *ApJ* (2018)

Ishizawa, <u>Sasaki</u> & Hosono, *ApJ* (2019)

- 転:天王星周囲に形成された円盤は進化する! Ida, Ueta, <u>Sasaki</u> & Ishizawa, *Nature Astronomy* (2020)
- Kihara, <u>Sasaki</u> & Ida, to be submitted

本日の内容

承:巨大天体衝突で天王星の衛星は作れるか?

結:新しい天王星衛星形成シナリオの完成(?)

天王星衛星形成シナリオの完成に向けて

Slattery et al. (1992) Kegerreis et al. (2018) Kurosaki & Inutsuka (2019) Reinhardt et al. (2020) Woo et al. (2022)

Ida et al. (2020)

Ishizawa et al. (2019) Ida et al. (2020) Woo et al. (2022)

(C) Yuya Ishizawa

大量のN体計算による統計的検証

Table 1. Mo	del sets	of initial	C
-------------	----------	------------	---

Run	$M_{ m disk}(M_{ m U})$	$r_{ m max}$
1	1.02×10^{-4}	•
2	8.92×10^{-5}	1
3	7.95×10^{-5}	1
4	7.16×10^{-5}	1
5	6.51×10^{-5}	1
6	1.44×10^{-4}	2
7	1.27×10^{-4}	2
8	1.13×10^{-4}	2
9	1.02×10^{-4}	2
10	9.29×10^{-5}	1
11	1.86×10^{-4}	2
12	1.64×10^{-4}	2
13	1.46×10^{-4}	2
14	1.31×10^{-4}	2
15	1.19×10^{-4}	2
16	2.26×10^{-4}	2
17	1.99×10^{-4}	2
18	1.77×10^{-4}	2
19	1.60×10^{-4}	2
20	1.45×10^{-4}	2
21	2.65×10^{-4}	2
22	2.33×10^{-4}	2
23	2.08×10^{-4}	2
24	1.87×10^{-4}	2
25	1.70×10^{-4}	2

Kihara et al., to be submitted

condition $r_{ m U}(r_{ m U})$ 2019.3 18.7 18.117.622.121.320.620.019.523.8 22.922.221.521.025.124.223.522.8 22.226.325.424.523.823.2

典型的な計算結果の1例

Kihara et al., to be submitted

(b) The orbital inclination of each satellite

- Averagely four large satellites are formed and the smaller satellites locate in the inner area and the larger ones in the outer area.
- Only one satellite is formed around Ariel and Umbriel's orbits.
- A large satellite is robustly formed around 13 Ru where between Umbriel and Titania's location.
- Several satellites are formed 0.1outside of Oberon where no satellites have been discovered.

Mass[Mtot]

N体計算結果のまとめ

Kihara et al., to be submitted

<u>The orbit-crossing time</u> Zhou et al. (2007)

$$\log\left(\frac{T_{\rm c}}{1 {\rm yr}}\right) = A + B \log\left(\frac{k_0}{2.3}\right)$$
$$A = -2 + \frac{e}{h} - 0.27 \log\frac{m}{M_{\rm U}}$$
$$B = 18.7 + 1.1 \log\frac{m}{M_{\rm U}} - \left(16.8 + 1.2 \log\frac{m}{M_{\rm U}}\right)$$

The produced satellites will be scattered with each other by gravitational interactions via orbital crossing on a timescale about 10⁶ years, then move into the current orbits.

Kihara et al., to be submitted

議論:形成された衛星系の軌道安定性

(1) $k_0 = 12.0$, $T_c = 3.3 \times 10^7$ [yr] (2) $k_0 = 9.0$, $T_c = 1.7 \times 10^6$ [yr] (3) $k_0 = 8.7$, $T_c = 7.5 \times 10^5$ [yr]

議論:遠方に形成された存在しない衛星たち 1010 real prograde satellites × 10^{-1} simulation 10 10 retorograde satellites [] 10⁻⁰ Mass[Mtot] Mass[Mtot] 10_-1 Mass[Mtot] 10^{-3} 10^{-3} 10^{-3} 10 10^{-4} 20 10 10 20 10^{-5} Semi-major axis[Ru] Semi-major axis[Ru]

No satellites between 25-150Ru

Kihara et al., to be submitted

1. The outer satellites will collide with Oberon? -> No; they have larger perigee distances than the Oberon's orbit.

2. Protoplanets' encounters to the Uranian system? -> Possibly; we need to estimate the probability of such encounter events.

- 起:太陽の周りを横倒しで回る天王星系 Slattery et al., *Icarus* (1992), Kegerreis et al., *ApJ* (2018)

Ishizawa, <u>Sasaki</u> & Hosono, *ApJ* (2019)

- 転:天王星周囲に形成された円盤は進化する! Ida, Ueta, <u>Sasaki</u> & Ishizawa, *Nature Astronomy* (2020)
- 結:新しい天王星衛星形成シナリオの完成(?) Kihara, <u>Sasaki</u> & Ida, to be submitted

本日の内容

承:巨大天体衝突で天王星の衛星は作れるか?