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本日の内容

起：太陽の周りを横倒しで回る天王星系 

承：巨大天体衝突で天王星の衛星は作れるか？ 

転：天王星周囲に形成された円盤は進化する！ 

結：新しい天王星衛星形成シナリオの完成（？）
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Ishizawa, Sasaki & Hosono, ApJ (2019)

Ida, Ueta, Sasaki & Ishizawa, Nature Astronomy (2020)

Kihara, Sasaki & Ida, to be submitted



太陽系の惑星の自転



天王星衛星系の特徴1.2 Scenarios of satellite formation

Figure 1: The mass distribution of the regular satellites orbiting around Uranus. The horizontal
axis indicates the semi-major axes of the satellites normalized by the Roche limit and the vertical
axis indicates the satellite mass normalized by the Uranian mass with log scale. The satellites
are represented as circles. Satellites in the region from 5RU to 23RU are the five major satellites:
Miranda, Ariel, Umbriel, Titania and Oberon in this order from the inner side.

1.2 Scenarios of satellite formation

How these satellites are formed? Several scenarios have been proposed so far to explain the

origins of satellites including the Uranian satellites.

• Gas-starved disk model (e.g, Canup and Ward, 2002, 2006): Satellite growth and loss are

repeated in the circum-planetary disk produced by a slow inflow of gas and ice-rock solids

from solar orbit during the end stages of the formation of the Solar System. When the mass

supplies terminate, the last generation of this cycle are left in orbits.

• Viscous spreading disk model (e.g., Crida and Charnoz, 2012): A disk of solid material

around a planet, like Saturnian rings, spread due to the disk’s viscosity beyond the Roche

limit (inside which planetary tides prevent aggregation). Satellites are formed outside the

Roche limit, migrate outward due to the tidal torque from the planet and the disk.

• Giant impact scenario (e.g., Slattery et al., 1991): A planetary body collide with a planet,

materials from the two bodies are ejected around. The ejected materials form a disk around

the planet and one or more satellites are formed from the disk.

The representative studies of these scenarios are presented bellow in more detail.
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• Uranus has a large axial tilt ~ 98˚

Uranian system

• The orbits of the regular satellites are almost on the equatorial plane
a relatively close and prograde orbit 

with little orbital inclination or eccentricity

(C) Yuya Ishizawa

Ariel Umbriel
Titania Oberon

Miranda
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Jupiter, Saturn and Uranus result for 1026 , ða=f Þ, 5£ 1024; that
is, a span of nearly three orders of magnitude. Although reliable
predictions for a and f are lacking, commonly used values (Fig. 1
legend) fall throughout this range.
The jovian and uranian systems each have four similarly sized large

satellites, while Saturn has a single large satellite and numerous
smaller satellites. Both morphologies can result from cycles of
satellite formation and loss, depending on the timing of inflow
cessation relative to the mass fraction oscillations seen in Fig. 2. As
a system containing multiple, similarly sized satellites (for example,
run c20 in Fig. 3b) undergoes orbital decay, it evolves through

periods in which only one or two of the largest satellites remain
(for example, runs c17 and c60 in Fig. 3b), accompanied by much
smaller moons that have accumulated in the regions vacated by the
lost satellites, with this cycle repeating until the inflow ceases.
The median number of final satellites in our 75 simulated systems

was N ¼ 7. Future collisions on timescales longer than those simu-
lated here are possible inmany cases20 (Supplementary Notes), which
would generally reduceN. As our added objects are larger than those
physically expected due to the inflow, the smallest final satellites
resulting from only a fewmergers were not well resolved. Themedian
number of large satellites with ðmS=MPÞ$ 1025 was N lg ¼ 4. These
objects had average orbital separations (,C lg . <17) comparable to
both those of the outer planets (see Table 1) and our analytic
estimates (Supplementary Notes).

Figure 4 | Results of accretion simulations with time-dependent inflows.
We consider FinðtÞ ¼ Finð0Þexpð2t=tinÞ and jGðtÞ ¼ jGð0Þexpð2t=tinÞ,
where t in is the inflow decay time (with 105 # t in (years) # 2 £ 106) and
t ¼ 0 is when we begin to follow the system’s evolution. Grey, black and
green symbols correspond to cases with (rC/RP) ¼ 25, 30 and 44,
respectively, while the red, orange and blue dashed lines show observed
values for Jupiter, Saturn and Uranus. a, Maximum final satellite mass
scaled to MP versus (a/f). (a, viscosity parameter; f, gas-to-solids ratio in
the inflow.) b, Final satellite system total mass scaled to MP versus (a/f).
Individual dashes are peak values from simulations with time-constant
inflows (for example, Fig. 2). In a and b, black lines are equations (2) and
(3) with (r/rC) ¼ 0.5, (c/rQ) ¼ 0.1, t in ¼ 106 yr, and
tG ¼ tG;last < tinðMP=MTÞ=f , corresponding to the last generation of
satellites. The viscosity a values were estimated9 using an effective planet
temperature TP ¼ 500K and disk opacity K ¼ 0.1; smaller (larger) values
would result if TP and/or Kwere higher (lower). By considering type I
migration, we assume satellites do not growmassive enough to open annular
gaps in the gas, at which point they transition to type II behaviour and are
typically locked to the disk’s viscous evolution14,47. An estimate of the gap
opening mass is48 mGap=MP < Cn

ffiffiffi
a

p ðH=rÞ5=2, where C n is a constant
,1–10. Our largest final satellites are all less massive thanmGap for C n ¼ 3,
with an average ,mlgst=mGap .¼ 0:2^ 0:1: In an inflow-supplied disk,
satellites are generally lost to type I decay before they grow tomGap. Type II
behaviour would tend to accelerate orbital decay relative to type I (because
tn ,, t I for disks here), accentuating the limiting effects onMTandmS that
we emphasize.

Figure 3 | Properties of observed satellites compared to simulations. Panel
a shows observed satellites, while panels b and c contain final simulated
systems produced by time-dependent inflows (with mS, satellite mass; MP

planetary mass). Panels b and c show results of inflows with g in ¼ 0,
rC ¼ 30RP, 1:7,Min=MT , 10 (where M in is the total mass in solids
delivered to the disk), and inflow exponential decay times, t in, between
2 £ 105 yr and 1.5 £ 106 yr. Systems were simulated for between 3 £ 106 yr
and 107 yr. Similar results are expected for higher M in/MT values
(corresponding to longer decay times and/or higher initial inflow rates),
provided that the corresponding inflow rate is consistent with a contracted
planet and a circumplanetary disk. Horizontal lines connect periapse to
apoapse for each satellite. b, A high, ða=f Þ ¼ 5£ 1024 case, with a ¼ 0.05,
produces five satellites with (MT/MP) ¼ 6.1 £ 1024 (c39, black), while a low,

(a/f) ¼ 1026 case, with a ¼ 1024, produces six satellites containing
ðMT=MPÞ ¼ 6:6£ 1025 (c41, yellow). An (a/f) ¼ 6.5 £ 1025 case with
a ¼ 0.0065 produces a galilean-like system with (MT/MP) ¼ 3.0 £ 1024

(c20, red), while an ða=f Þ ¼ 1:3£ 1025 case with a ¼ 0.0065 produces a
uranian-like system with (MT/MP) ¼ 1024 (c64, blue). A saturnian-like
systemwith (MT/MP) ¼ 1.8 £ 1024 (c17, green) results for (a/f) ¼ 6 £ 1025

and a ¼ 0.006. The most massive satellite at 14.6RP contains 1.2 £ 1024 MP

and 70% of the total satellite systemmass, and its close orbital spacing to the
satellite at 11.3RP (withC < 7 inmutual Hill radii) suggests a future collision
may occur20 (Supplementary Notes). An ða=f Þ ¼ 1:2£ 1024 case (c60, olive)
yields ðMT=MPÞ ¼ 3:3£ 1024; and two large satellites containing 0.9MT, with
the innermost having nearly been lost to inward decay. c, (MT/MP) versus
scaled time for the simulations shown in b.
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the timescale for delivery of mass MP. The critical satellite mass in
planet masses is then (see also Supplementary Notes):
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where x; ½ð1 week={2p=Q}Þðf =102ÞðtG=107 yrÞ$1=9 is of order unity.
The ratio (m crit/MP) depends extremely weakly on the inflow rate
through the (tG)

1/9 term in x. Thus a similar maximum satellite mass
wouldresult forawide rangeof inflowrates.Thediskaspect ratio, (H/r),
is a slowly varying quantity with r for most disks, with (H/r) < 0.1
(ref. 9). Although rC could potentially vary substantially between
planets, so long as satellites form throughout the inflow region, the
ratio (r/rC) will be similar and of order unity for the largest satellites.
The last term in equation (2) contains the ratio of two key param-
eters: the viscosity a parameter, and the gas-to-solids ratio in the
inflow, f. For a given inflow flux, a higher viscosity yields lower disk
gas surface densities, and thus allows larger mass satellites to survive
against type I decay, while a lower f implies a more solid-rich inflow,
which hastens the rate of satellite growth so that objects grow larger
before they are lost.

We now consider the implications of this limiting mass for the
total mass of the resulting satellite system. Consider an inflow that
persists for a time exceeding that needed for a satellite of massm crit to
form. Within a given annulus in the disk, a satellite grows to a mass
,m crit before being lost to type I decay, but in a comparable
timescale to its loss another similarly massive satellite grows in its
place (because t1 < tacc). In this way, the disk is regulated to contain
a total mass in satellites, MT, comparable to a distribution of mass
m crit objects across the inflow region. For (H/r) and f that are
approximately constant across the disk, the predicted satellite system
mass fraction is:
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similar to the observed satellite systems. Here we assume rC .. RP;
where RP is the planet’s radius. Note that (MT/MP) is insensitive to
inflow rate through x, lacks a dependence on rC, and depends quite
weakly on (a/f).

Simulation results
We model satellite growth and loss using a direct N-body accretion
simulation19, modified to include interactions with a gas disk and
ongoing mass inflow (Supplementary Methods). The solid inflow is
mimicked by the addition of orbiting objects with random positions
within the inflow region at a rate proportional to (F in/f). Collisions
are treated as inelastic mergers.
Figure 2 shows results of three simulations involving a time-

constant gas inflow rate but varied values for (a/f). Type I orbital
decay acts as a negative feedback on the total mass contained in the
satellite system, causing (MT/MP) to oscillate about a value com-
parable to the equation (3) estimate. Figures 3 and 4 show results of
exponentially decaying, time-dependent inflows. If the total mass in
solids delivered to the disk is comparable or greater thanMT, one or
more satellite systems described by equations (2) and (3) result. For
example, a solar composition (f < 102) inflow that provided the last
10% of a planet’smass could yield approximately five satellite systems
with MT=MP ¼ 2£ 1024:

Comparison with observed satellite systems
Our findings reveal a range of systems, within which the most basic
properties of the jovian, saturnian and uranian satellite distributions
are found (Fig. 3; Supplementary Figures). These three planets’
variedmasses and compositions imply that they would have probably
processed very different amounts of material through their proto-
satellite disks, and yet their satellite system mass ratios are nearly
identical. The results here predict this commonality, as the balance
between inflow-regulated satellite growth and gas-driven satellite loss
causes the total satellite mass fraction to maintain a roughly constant
value, which is nearly independent of both the inflow rate and its
characteristic specific angular momentum (which, as shown below,
determines rC). Thus, for example, a Jupiter-like gas giant which
acquired most of its mass through gas inflow from a strongly
perturbed disk (Fig. 1a) is predicted to share a common satellite
mass fraction with that of a much smaller uranian-sized planet,
whose gas inflow history and gravitational effects on the local nebula
would have been substantially different. This common fractional
value is determined primarily by the ratio of two parameters
describing the disk’s viscosity (a) and the inflow’s gas-to-solid
composition (f). Aweak dependence on this ratio, with ðMT=MPÞ/
ða=f Þ1=3; implies that satellite system masses similar to those of

Figure 2 | Results of satellite accretion simulations with time-constant
inflows. The total mass in satellites,MT, scaled to the planet’s mass,MP, is
shown versus time scaled to tG ;MP=ðdM=dtÞ21;where dM/dt is the inflow
rate. All three cases consider inflows having tG ¼ 5 £ 106 yr, rC ¼ 30RP,
and g in ¼ 0, with the green, blue and red lines corresponding respectively to
simulations with (a/f) ¼ 1026, 5 £ 1025 and 5 £ 1024. The inflow of solids
causesMT to increase with time until objects of mass,m crit form (equation
(2)). The orbits of the largest satellites then decay inward, andMT decreases
in discrete steps as satellites are lost to collision with the planet. Solid inflow
to the disk continues, leading to the growth of another generation of mass
,m crit objects, and the cycle repeats. As (MT/MP) depends on (a/f)1/3, the
factor of 500 variation in (a/f) across these simulations yields about a factor
of 10 spread in the characteristic system mass fractions. The long period
oscillations in (MT/MP) reflect the time needed to deliver mass sufficient
to form mass mcrit objects; this period shortens as (a/f) (and therefore
(m crit/MP)) is decreased for a fixed tG. Shorter period variations result from
the loss of individual objects. Dashed lines are predicted (MT/MP) values
(equation (3)). Equations (2) and (3) treat disk annuli independently but in
actuality, as satellites formed in the outer disk migrate inwards they pass
through interior zones and cannibalize material along the way. Migration-
driven growth hastens their orbital decay, so that they are lost somewhat
more quickly than the time needed to replenish their mass in their original
radial zone. This causes both a spread in the maximum satellite mass at a
given time compared to equation (2), and the (MT/MP) value from equation
(3) to be an approximate upper limit, as seen here.
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天王星衛星系の形成メカニズム（２）

Crida & Charnoz (2012)

(C) Nagoya Univ.

Formation of Regular Satellites
from Ancient Massive Rings
in the Solar System.
A. Crida1* and S. Charnoz2,3

When a planetary tidal disk—like Saturn’s rings—spreads beyond the Roche radius (inside
which planetary tides prevent aggregation), satellites form and migrate away. Here, we show
that most regular satellites in the solar system probably formed in this way. According to our
analytical model, when the spreading is slow, a retinue of satellites appear with masses increasing
with distance to the Roche radius, in excellent agreement with Saturn’s, Uranus’, and Neptune’s
satellite systems. This suggests that Uranus and Neptune used to have massive rings that
disappeared to give birth to most of their regular satellites. When the spreading is fast, only
one large satellite forms, as was the case for Pluto and Earth. This conceptually bridges the gap
between terrestrial and giant planet systems.

Satellites are generally thought to form con-
currently with a giant planet, in a large
circumplanetary gaseous disk where there

is inflow of solids. Two competing models exist
in the literature (1–4), in which solids aggregate
to form satellites that can migrate in the gas (and

possibly be lost) before the gas dissipates. These
models have their pros and cons, but none can
explain the surprising orbital architecture of Sat-
urn’s, Uranus’, and Neptune’s satellite systems,
where the smallest bodies accumulate at a dis-
tance from the planet that is twice its radius (the
Roche radius), and their masses increase with
distance starting from this point (F1 Fig. 1A). More-
over, in the frame of a circumplanetary gas disk,
Uranus’ satellites should orbit in the ecliptic plane,
and not the equatorial plane of the tilted planet
(5). Also, Uranus and Neptune might be too light
to have retained amassive enough gaseous disk (6).
These considerations suggest that an alternative

model is needed, to explain at least the origin of
the giant planets’ innermost satellites.

Here, we consider a disk of solid material
around a planet, similar to Saturn’s rings, where-
in planetary tides prevent aggregation within the
Roche radius rR (7) [supplementary text 1 (SM 1)].
It is known that such a tidal disk will spread (8).
Thus, the normalized disk lifetime can be de-
fined by tdisk = Mdisk/FTR, where F is the mass
flow through rR, TR is the orbital period at rR,
and Mdisk = pSrR

2 is the disk’s mass (S being the
surface density). Using a prescription for the vis-
cosity based on self-gravity and mutual colli-
sions (9), one finds

tdisk = 0.0425/D2

where D = Mdisk/Mp and Mp is the planet’s
mass (SM 2.2.1).

As material migrates beyond rR, new moons
form (10, 11). They are then repelled by the tidal
disk through resonant angular momentum ex-
change and migrate outward as they grow. A
satellite of mass M orbiting outside a tidal disk
experiences a positive gravitational torque (12)

G = (32p2/27)q2SrR
4TR

−2D−3

where q = M/Mp, D = (r – rR)/rR, and r is the
orbital radius. Thus, it migrates outward at a rate
(SM 2.1)

dD/dt = (25/33)qDTR
−1D−3

The migration rate increases with mass-ratio q
and decreases with distance D. Based on the

REPORT

1Laboratoire Lagrange UMR 7293, Université de Nice Sophia–
Antipolis, CNRS, Observatoire de la Côte d’Azur, BP4229,
06304 Nice Cedex 4, France. 2Laboratoire AIM, Université Paris
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3Institut Universitaire de France, 103 bd Saint Michel, 75005
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Fig. 1. Distribution of the regular satellites of the giant planets. Saturn: 9
satellites from Pandora to Titan. Uranus: (A) 18 from Cordelia to Oberon; (B) 14
satellites, from Bianca to Oberon (except Cupid and Mab, out of scale). Neptune:
Naiad, Thalassa, Despina, Galatea, Larissa, and Proteus. Jupiter: Metis, Adrastea,
Amalthea, These, Io, Europa, Ganymede, and Callisto. (A) Mass as a function of
the orbital radius. The four systems do not extend all the way down to the
planetary radius (vertical line), but a pile-up of small satellites is observed at a
specific distance (the Roche limit, rR). The mass increases from zero with the

distance to rR, not to the center of the planets. (B) Satellite-to-planet mass ratio
q as a function of D = (r – rR)/rR. The Roche radius for each planet is taken
consistently with the mean density of satellites, or with the orbit of the closest
one (SM 1). For Saturn, Uranus, and Neptune, rR = 140,000, 57,300, and
44,000 km, respectively. Short dashed curves: our model for the pyramidal regime
Q(D) (Eq. S25, SM 6.3): for D < D2:1, q º D9/5 ; for D > D2:1, q º (D + 1)3.9,
where D2:1 = 0.59 is marked by the vertical dashed line. Jupiter’s system
does not fit well and is not shown (SM 7.3).

(1)

(2)

(3)
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FIG.  1. S n a p s h o t s  o f  a typica l  low impac t  p a r a m e t e r  col l is ion ( run  82) wi th  a 2 -M¢ impac to r .  In this  c a se  v e r y  little ma te r i a l  e n d s  up  in orbi t ,  
and  all ma te r i a l  in orbi t  b e l o n g e d  to the  target .  T h e  final ro ta t ion  pe r iod  is 15.1 hr.  

lar momentum is conserved to better than 0.1%. These 
variations are reasonably small and we do not expect them 
to affect the outcome of the calculations. We have not run 
these simulations with a larger number of particles. Based 
on previous simulations of giant impacts and simulations 
of stellar collisions we are confident that the number used 
in these simulations is entirely adequate to derive global 
quantities such as rotation rates. If we had increased the 
number of particles we would certainly have obtained a 
much better resolution of the amount of ejected material. 
Unfortunately, in 3D an increase in linear resolution of a 
factor of 2 (anything below would not amount to a signifi- 
cant change) corresponds to a factor of 8 in particle num- 
ber which, together with the necessary decrease in time- 
step size, would make the problem much more numeri- 
cally challenging. 

In all the calculations proto-Uranus contained 5000 par- 
ticles and the impactor had 3000. For a 2-M e impactor 
this corresponds to a resolution of 2.5 × 10  - 3  and 6.7 × 
10-4Me for proto-Uranus and the impactor, respectively. 
A typical larger Uranian satellite has a mass of 3 x 10 -4 
M e, which is less than half of the smallest particle mass. 
Since we do not have a good theory of the satellite forma- 
tion processes, we do not know whether placing the mini- 
mum acceptable mass in orbit, which is a little below the 
threshold of our resolution, provides a problem for our 
interpretation or not. Since nature frequently uses its mass 
resources inefficiently, we assume that having rock and 

ice deposited in orbit following the collision is a desirable 
outcome rather than an undesirable one for formation of 
the regular satellites. 

All collisions took place starting with a velocity at infin- 
ity of 5 km/sec. Since the orbital velocity of Uranus is 6.8 
km/sec, these collisions are near the upper end of the 
expected relative velocities. Once the velocity is picked, 
one can choose the angular momentum and then fix the 
impact parameter, using conservation of energy and angu- 
lar momentum. 

V I .  R E S U L T S  A N D  D I S C U S S I O N  

We illustrate the character of the Uranus impacts with 
snapshots of collisions which take place with relatively 
low and relatively high values of angular momentum. The 
first, shown in Fig. l, has an angular momentum of 3.0 x 
1043 g cmE/sec (run 82) and results in a rotation period of 
15. I hr. An entirely different character for a collision is 
shown in Fig. 2, which starts with an angular momentum 
of 6.1 x 10 43 g cmE/sec (run 53), but ends up with a rotation 
period of 13.9 hr. 

Figure 1 shows a typical small impact parameter colli- 
sion. The impactor's core surges ahead of its icy mantle 
and is finally slowed by the thick atmosphere of proto- 
Uranus. In contrast, the impactor shown in Fig. 2 only 
grazes proto-Uranus and then is tidally distorted before 
finally plunging into proto-Uranus. 

巨大天体衝突で天王星系を傾ける

likely produced by co-accretion during Uranus’ limited gas
accretion phase. A giant impact then tilts the planet to its
current 98° obliquity, and impulsively perturbs the preexisting
satellites into mutually crossing orbits.

Disruptive collisions between the satellites are then postu-
lated to produce a debris disk in the pre-impact equatorial plane
of the planet. This disk is initially highly tilted relative to
Uranus’ new, post-impact equatorial plane. The planet’s
oblateness (primarily its J2) causes the ascending nodes of
disk material to precess about the planet’s new equatorial plane,
with precession rates that vary strongly with distance. If the
planet’s J2 were the only source of precession, the ascending
nodes of outer debris orbits would quickly randomize, with the
initially highly inclined debris ring evolving into a thick torus
symmetric about the planet’s new equatorial plane. Inelastic
collisions within the torus would damp relative vertical
motions, leading to an equatorial disk and ultimately low-
inclination satellites. If only a minority of debris were lost to
escape or collision with the planet, the final satellite system
would then approximately preserve the 10−4 satellite system
mass ratio produced by Uranus’ earlier gas accretion.

This desired outcome is frustrated by the gravity of the outer
debris disk itself, which tries to force its material to precess
about its initial plane. This effect dominates over that of the
planet’s J2 at distances beyond about 7RU (where RU is Uranus’
current mean radius), causing the outer regions of the debris
disk to precess rigidly and maintain an inclined structure
(Morbidelli et al. 2012). Such a warped disk would accrete into
outer moons with large inclinations, inconsistent with the low
inclinations of Titania and Oberon. The clever solution
proposed in Morbidelli et al. (2012) recognizes that the
Uranus-tilting impact itself could have created an approxi-
mately equatorial inner disk, extending to perhaps a few
Uranian radii (Figure 1(b)), and the gravity of this c-disk would
enhance the effect of the planet’s J2. For a massive enough
c-disk, even the outer debris disk could then be appropriately
realigned to the planet’s new equatorial plane.

However, the required c-disk mass is very large, ∼10−2MU,
about 100 times the mass of the Uranian satellite system. A
final needed step for success of the model is that the c-disk and
its massive byproducts must be lost, as no comparably massive
ring or inner moon exist at Uranus today. Morbidelli et al.
(2012) suggested that c-disk material remained interior to the
synchronous orbit (currently located at about 3.3RU) and was
ultimately lost by inward tidal decay. However, it is unclear
whether this is probable, given the tendency for moons
spawned from a massive inner disk to spread substantially
outward due to disk torques and mutual interactions (e.g.,
Salmon & Canup 2012, 2017).
In this paper, we address some key aspects of the co-

accretion + giant impact model to evaluate the conditions
needed for (1) the outer debris disk to accrete into a Uranian-
like satellite system with low inclinations and an outermost
large satellite orbit similar to that of Oberon, and (2)
preservation of this re-accreted, ∼10−4MU mass satellite
system as a much more massive inner c-disk later cooled and
evolved.

2. Evolution of the Outer Debris Disk

We consider the evolution of the outer debris disk after the
Uranus-tipping impact, and assess conditions required for it to
fully realign with Uranus’ new equatorial plane so as to
produce a system of low-inclination moons similar to Uranus’
four largest moons. We then simulate the accretion of satellites
from this disk after its realignment, and evaluate basic disk
properties needed to account for the current Uranian satellite
system.

2.1. Nodal Randomization

We assume that the impulse to the planet from the giant
impact destabilizes a prior satellite system, leading to mutually
disruptive collisions that produce an outer debris disk with
mass∼10−4MU. To estimate the mass of the inner c-disk
needed to cause rapid nodal regression out to distances
consistent with low-inclination Oberon, Morbidelli et al.
(2012) used a Laplace–Lagrange ring code and an N-body
code, mimicking the secular effect of an inner c-disk by treating
it as a moon of mass Mc orbiting at 3RU (hereafter we will refer
to this body as the c-moon). We adopt a similar approach, but
model the outer debris disk with an N-body simulation (Duncan
et al. 1998) that includes inelastic collisions (adopting normal
and tangential coefficients of restitution) and mergers when the
rebound velocity is below a mutual escape velocity (as in
Salmon & Canup 2012). The goal is to assess when nodal
randomization driven by the inner c-disk overcomes the
tendency for gravitational interactions among fragments in
the outer disk to maintain an inclined disk.
Table 1 lists the initial parameters for our simulations. All

begin with an outer disk of 5000 equal-mass particles arranged
in a radially flat surface density profile, with a total outer disk
mass of 10−4MU and with semimajor axes extending from
4–40RU. The initial N-body particles are large, >50 km in
radius, which sets the granularity of the treatment of self-
gravity in our simulations. The actual initial size of outer debris
fragments is uncertain. Gravitational interactions are treated
with an N2 algorithm with mutual interactions included for
bodies closer than about 6 mutual Hill radii (Duncan et al.
1998). All particles initially have the same eccentricity (0.1),

Figure 1. Co-accretion + giant impact concept of Morbidelli et al. (2012).
Dashed lines indicate Uranus’ equatorial plane, while the z-axis is normal to
Uranus’ orbital plane. (a) Uranus begins with a prograde obliquity (θ0) and a
satellite system with mass ∼10−4MU, likely formed by co-accretion. A giant
impact then creates Uranus’ 98° obliquity and an inner c-disk with mass
∼10−2MU. The impactʼs impulse destabilizes the prior moons, causing initially
disruptive mutual collisions. (b) Debris from these collisions is forced
(primarily) by the equatorial c-disk to differentially precess, producing an
outer debris torus with mass ∼10−4MU that is symmetric about Uranusʼs new
equatorial plane. Inelastic collisions among debris material flatten the torus into
an equatorial disk. (c) Uranusʼ current large satellites with total mass ∼10−4MU
re-accrete from the outer debris disk on low-inclination orbits relative to the
planet’s final equatorial plane (orange), while the much more massive c-disk
and nearly all of its byproducts (blue) must ultimately be lost to collision with
Uranus.
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Co-accretion + giant impact concept 
Morbidelli et al. (2012)

Giant impact simulation (SPH; N=8,000)



巨大天体衝突計算（高解像度）

Kegerreis et al. (2018)

results. The angular momenta of the systems ranged from 1 to
10×1036 kg m2s−1. This was achieved by changing the
impact parameter, while keeping the relative velocity at infinity
fixed at 5kms−1, following S92 (Appendix B). Three head-on
impacts were also simulated, one for each impactor mass.
These of course cannot produce the required spin but are useful
comparisons for investigating the other consequences of a
collision. A set of otherwise-identical simulations with
velocities at infinity ranging from 1 to 9kms−1 were also
performed to confirm that this choice does not significantly
affect the results.

Depending on the angular momentum and impactor mass,
the time taken for the impact to complete and leave a settled
planet varied from roughly 1 to 7 Earth days. The simulations
were stopped once the results presented in this paper were not
changing over timescales of 10,000s. Using a Courant factor
of 0.3 gave typical simulation timesteps of 5–10 and 2.5–5s
for the 105 and 106 particle runs, respectively, meaning that the
impact simulations typically contained ∼105 steps.

3. Results

The results of the simulations are described in this section,
starting with a broad description of the post-impact distribution
of material. This enables us to define three mutually exclusive
categories into which the particles are placed: “planet,” “orbit,”

and “unbound.” We then describe in more detail the properties
of the planets that are produced, before turning our attention to
the composition of the orbiting debris cloud exterior to the
Roche radius and the fraction of the H–He atmosphere that is
retained within the Roche radius after the impact.
Given the large number of simulations, we will focus, in

particular, on two 2M⊕-impactor simulations with low
(L= 2× 1036kg m2 s−1) and high (L= 5× 1036kg m2 s−1)
angular momenta, as archetypal examples of ∼head-on and
grazing impacts respectively. Figures 2 and 3 show snapshots
from these two giant impact simulations, included as anima-
tions in the online version. These illustrate the typical features
of all the impacts, with most of the impactor’s rock ending up
on the edge of the core of the final planet, while the impactor’s
ice is deposited into the outer regions of the icy mantle. At
higher angular momenta, multiple passes and tidal stripping of
the impactor leave more material in orbit around the final
planet. Full animations of the impacts are also available to view
at icc.dur.ac.uk/giant_impacts.

3.1. Material Distribution

The density profiles of the final mass distributions in the
example low and high angular momentum impacts are shown
in Figure 4. For the more head-on collision, the impactor core
is delivered more efficiently to the core of the final planet. This

Figure 2. Snapshots from a low angular momentum impact simulation with a 2M⊕ impactor and L=2×1036kgm2s−1. Particles between z=0 and −13R⊕ are
shown, colored by material type and originating body. Light and dark gray show the target’s ice and rock material, respectively, and purple and brown show the same
for the impactor. Light blue is the target’s atmosphere. The white dashed circle traces out the current Roche radius of Uranus for reference. The snapshot times are
given to the nearest half hour since the start of the simulation. This figure is available as an animation. Its duration is 90 s and it shows the time from 0 to 43.3 hr.

(An animation of this figure is available.)
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of 5.5–5.8R⊕ (for a satellite density of 1 g cm−3), the Roche
radius of present-day Uranus is 6.2R⊕. When considering the
material available for moon formation and the distribution of
the post-impact H–He, we will use radii of 6±0.5 R⊕ to allow
for the uncertainty in the planet’s mass and choice of satellite
density.

3.2. Resulting Planet

With the final planets defined as described in Section 3.1, we
can study their rotation rates and internal structures. These
properties are discussed in the following two subsections.

3.2.1. Rotation Rate

Figure 5 shows how the rotation period varies with impactor
mass and angular momentum. Despite using different proto-
Uranus and impactor models from those of S92, we find broadly
similar results. There is no 1M⊕ impactor with a relative velocity
at infinity of 5kms−1 that can produce a sufficiently rapidly
rotating planet. Both 2 and 3M⊕ impactors are able to satisfy this
requirement, provided that the impactor is bringing an angular
momentum of at least 2×1036kgm2s−1. At first, raising the
angular momentum increases the final spin. However, for very
high angular momentum values, to the right of the figure, the
impactor starts to only graze and eventually misses the target,
making it unable to transfer enough of its huge angular
momentum.

Our range of simulation numbers of particles shows that
these results vary little with numerical resolution, and find them
to be already well-determined with the low number of particles
adopted by S92. So, the general agreement of (and any
differences between) our rotation-rate results and theirs is
primarily testing the different models for the colliding bodies
and the materials within them, rather than showing numerical
effects.

3.2.2. Interior

The density profiles within the planet and their decomposi-
tion into material types from the two colliding bodies are
shown for the low and high angular momentum impacts in
Figure 4. Considering the suite of simulations in full, Figures 6

Figure 4. The final radial density profiles for the same relatively head-on (left) and grazing (right) impacts as in Figures 2 and 3. The black line shows the proto-
Uranus density profile. The lower panels show the mass of particles in radial bins of width 0.5R⊕, split by material type and originating body. Light and dark gray
show the target’s ice and rock material, respectively, and purple and brown show the same for the impactor. Light blue is the target’s atmosphere.

Figure 5. Median rotation periods for particles in the final planets produced by
runs with different angular momenta and impactor masses, as given in the
legend. The rotation period of each particle is calculated from its tangential
velocity and distance from the z axis. All planet particles have negligible
velocities in the radial and z directions. The green points show the
2M⊕-impactor simulations with velocities at infinity of 1–9kms−1 instead
of the default 5kms−1. The dashed horizontal line shows the current rotation
rate of Uranus of 17.24hr (Warwick et al. 1986).
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本日の内容

起：太陽の周りを横倒しで回る天王星系 

承：巨大天体衝突で天王星の衛星は作れるか？ 

転：天王星周囲に形成された円盤は進化する！ 

結：新しい天王星衛星形成シナリオの完成（？）

Slattery et al., Icarus (1992),  Kegerreis et al., ApJ (2018)

Ishizawa, Sasaki & Hosono, ApJ (2019)

Ida, Ueta, Sasaki & Ishizawa, Nature Astronomy (2020)

Kihara, Sasaki & Ida, to be submitted



巨大天体衝突による天王星衛星形成シナリオ1.2. Formation scenarios for the Uranian satellites 7

Figure 1.4: A schematic process of a giant impact scenario. First,
two protoplanets collide with each other and then materials of the two
bodies ejected around. Second, satellites are formed from a circum-

planetary disk of ejected materials.

1. Collision between protoplanets

2. Evolution of a circumplanetary disk

3. Satellite formation

A giant impact is a high energetic collision and it is usually modeled by using the

smoothed-particle hydrodynamics (SPH) method, in which the fluid elements are

represented by particles. Slattery et al. (1992) performed hydrodynamic simulations

of collisions between a model of primitive Uranus and impactors with masses ranging

from one Earth’s mass to three Earth’s masses (Figure 1.5). In their simulations,

total angular momentum in the system is varied as a parameter. They conclude that

a fairly large range of giant impacts that could have produced the rotational period

and the large axial tilt of Uranus in the present. They also suggest that Uranian

regular satellites could be formed accreting materials ejected in orbit.

The disk produced by a giant impact has high energy and high temperature just

after the impact considered to experience some cooling process. However, it is diffi-

cult to simulate the disk evolution by the SPH method since the SPH method has

difficulties in dealing with hydrodynamical instabilities. Ward (2017) analytically

investigated evolution of a circumplanetary disk formed by a giant impact. He ex-

amined evolutions of two-phase disks in vapor/melt and water/steam equilibrium in

the cases for a terrestrial planet (e.g., Earth) and an ice giant planet (e.g., Uranus),

respectively. He modeled hypothetically a water/steam disk placed within the Roche

limit around an ice giant planet in which viscous heating dominates. He suggest that

Ishizawa et al. (2019)



天王星衛星形成のＮ体シミュレーション
Method (N-body simulation)

• Using FDPS for speeding up calculations

(Framework for Developing Particle Simulator ; Iwasawa et al., 2016 )


• Collisions are moderately inelastic, and mergers 
occur if the Jacobi energy after the collision is 
negative     ( e.g., Kokubo et al., 2000 ) 

• Equation of motion : 

• Using 4th Hermite scheme and Leap Frog 
method for the numerical time integration

• Number of disk particles : Ndisk = 10,000

Disk models with negative gradient

Surface density of a circumplanetary disk generated by a GI is assumed 
to have a power-low distribution

Semi-major axis
Su
rfa
ce
 d
en
sit
y

Mdisk
25RU

Σ　a-q Disk1 Disk2 Disk3 Disk4 Disk5 Disk6

Mdisk 4Mtot 3Mtot 3Mtot 4Mtot 3Mtot 10Mtot

q 2.15 1.50 1.95 1.95 3.0 2.15

• Disk size a                         →  RU < a < 25RU 

• Disk mass Mdisk                 →  Several times Mtot (the total satellite mass) 

• Surface density Σ(a) ∝ a-q   →  The power-index -q is varied as a parameter

These disk models have negative gradients directly inferred from the 
results of the SPH simulations (Kegerreis et al., 2018)

(C) Yuya Ishizawa



結果：形成された天王星衛星系の特徴
Results of N-body simulations

for a disk model with negative gradient ✳

Results of Numerical simulations
The current satellites

   R
U 

< a <  7R
U  

  extra massive satellites 

 7R
U 

< a < 13R
U 

  too large satellites 

      13R
U 

< a        too small satellites 

After several thousand years,

・some particles have comparable masses to the current satellites
・but the mass-orbital distribution is different from the current system

Disk1 Mdisk = 4.0Mtot , q = 2.15

Ariel Umbriel

Titania Oberon

Results of N-body simulations

similar tendency in other disk models ✳

Results of Numerical simulations
The current satellites

Ishizawa et al. (2019)

Results of N-body simulations

similar tendency in other disk models ✳

Results of Numerical simulations
The current satellites

Results of N-body simulations

similar tendency in other disk models ✳

Results of Numerical simulations
The current satellites



潮汐による軌道進化
Corotation radius : the orbital radius where a satellite has an 
angular velocity equal to a spin angular velocity of a planet

40

‣ Inside   ：Ω < ω, recieving negative torque　⇨　Orbital decay

‣ Outside：Ω > ω, recieving positive torque　 ⇨　Orbital growth

Planet

rc (Corotation radius)

ω

Ω
Orbital decay Orbital growth

Ω=ω(a) → a=rc

Orbital evolution by planet’s tides

The corotation radius of Uranus rc ~3.3RU

(Charnoz et al., 2011)

(C) Yuya Ishizawa



議論：衛星の潮汐軌道進化を考慮するOrbital evolution of satellites by the planet’s tides

The corotation radius of Uranus rc ~ 3.3RU

(Charnoz et al. 2011)

A satellite’s semi-major axis evolves according to

Qp ＝ 11,000 (Tittemore and Wisdom 1989 )

 (Gavrilov and Zharkov 1977 )k2p ＝ 0.104

Disk1

• Inner satellites fall into Uranus or move outward

• Satellites in the middle merge each other

• Outer satellites (>10RU) remain in the almost same orbits

Even if orbital evolution is considered, 
the satellite distribution could not been 
reproduced from a disk with negative gradient

Ishizawa et al. (2019)



リングからの内側衛星の形成可能性

4.3 In-situ formation scenario

Figure 18: A schematic process of the satellite formation and evolution. Filled circles represent
satellites and thick arrows represent migrations of satellites

25

1.2 Scenarios of satellite formation

Figure 1: The mass distribution of the regular satellites orbiting around Uranus. The horizontal
axis indicates the semi-major axes of the satellites normalized by the Roche limit and the vertical
axis indicates the satellite mass normalized by the Uranian mass with log scale. The satellites
are represented as circles. Satellites in the region from 5RU to 23RU are the five major satellites:
Miranda, Ariel, Umbriel, Titania and Oberon in this order from the inner side.

1.2 Scenarios of satellite formation

How these satellites are formed? Several scenarios have been proposed so far to explain the

origins of satellites including the Uranian satellites.

• Gas-starved disk model (e.g, Canup and Ward, 2002, 2006): Satellite growth and loss are

repeated in the circum-planetary disk produced by a slow inflow of gas and ice-rock solids

from solar orbit during the end stages of the formation of the Solar System. When the mass

supplies terminate, the last generation of this cycle are left in orbits.

• Viscous spreading disk model (e.g., Crida and Charnoz, 2012): A disk of solid material

around a planet, like Saturnian rings, spread due to the disk’s viscosity beyond the Roche

limit (inside which planetary tides prevent aggregation). Satellites are formed outside the

Roche limit, migrate outward due to the tidal torque from the planet and the disk.

• Giant impact scenario (e.g., Slattery et al., 1991): A planetary body collide with a planet,

materials from the two bodies are ejected around. The ejected materials form a disk around

the planet and one or more satellites are formed from the disk.

The representative studies of these scenarios are presented bellow in more detail.

2
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結論：天王星衛星系を再現できなかった

We performed N-body simulations and analytical calculations  
to investigate the possibility of the in-situ satellite formation  
from a debris disk around Uranus produced by GI.

Summary of Chapter 2

When the disk surface density has a negative power law gradient, 

• satellites with too large masses would form around the orbit of Ariel an Umbriel

• the outermost satellites would not reach to the mass and the orbital radius of Oberon

It would be difficult to reproduce the 
distribution of the current satellite system 
from a debris disk with a negative gradient

The five major satellites would form in the current site
The small inner moons may form from rings of disrupted satellites as Crida & Charnoz (2012)Ishizawa et al. (2019)
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周天王星円盤の進化を考える必要がある

Protoplanets collide each other Satellite formation

Giant Impact (GI) scenario for satellite formation

Disk evolution

• A disk generated by a giant impact is mostly vaporized 
• It may undergo viscous diffusion until the re-condensation of materials 

SPH method N-body

In hydrodynamical simulations it is difficult to describe dynamics of 
such disk including phase change over several hundred years

(C) Yuya Ishizawa



周天王星円盤の進化の概念図
An impact generates a gas disk of 
H/He and vaporized H2O and rock

Viscous diffusion and radiative 
cooling of the gas disk 

Ice condensates when Tdisk falls 
bellow the freezing point of H2O

Evolution model by Ida et al. 2020

Uranus

Uranus

Uranus

Uranus

Gas disk

Ice

Ice

Gas disk

Gas disk

A disk of ice has more mass on the 
outer side 

(C) Yuya Ishizawa



円盤進化モデル

240K240K
Time = 10, 102, 103, 104

Gas disk evolution model

• Local disk temperature T 
    Equilibrium between viscous heating and radiative cooling

• Viscosity ν 
   α is a constant parameter to represent the turbulence strength  

(Lynden-Bell & Pringle 1974; Hartmann+ 1998)

(Shakura & Sunyaev 1973)

• Surface density of gas (H/He/H2O) Σg  
    Surface density evolves 

    according to the viscous diffusion equation

Ida et. al. (2020) performed the simulation  
for the viscous diffusion of a vapor disk and also derived analytical formula

Ice condensation  
occurs at T ~ 240K

LETTERS NATURE ASTRONOMY

without radial drift. Owing to the disk gas depletion, ‘type I migra-
tion’ of proto-satellites caused by the torque from density waves in 
the disk would not be important, either (Methods). Therefore, the 
satellitesimals and satellites must be formed in situ.

The vaporization of rocks occurs at T > 2,000 K (ref. 16). Owing 
to the high vaporization or condensation temperature, silicate 
(rock components) grains should quickly re-condense, while the 
disk is still massive and compact. Our model naturally produces 
an enhanced rock-to-ice ratio of the satellites because the ices con-
dense after a reduction of water vapour by two orders of magni-
tude, whereas the rocks condense before substantial reduction has 
occurred. Although the silicates condense only in the inner region, 
they would also spread uniformly in the disk. Because silicate par-
ticles are not sticky at silicate–silicate collisions17, they do not grow 
larger than about 100 μm and they radially spread with the turbu-
lent viscous dissipation in the disk, unless the turbulence is very 
weak (see Methods). After the disk cools down and ice condensa-
tion starts, silicate particles can stick to icy particles or ices may 
condense to the silicate particle surface beyond the ice line one after 
another, which could potentially account for a relatively uniform 
rock-to-ice ratio (about O(1)) of all the satellites. Thus, our model 
may also solve the small rock-to-ice ratio produced by previous 
simulations1,3,4, although more detailed investigation is needed.

The condensed ice mass distribution peaks strongly at ! rmax
I

.  
This is consistent with the mass–orbit distribution of Uranian satel-
lites (Fig. 1). We have performed a direct three-dimensional N-body 
simulation from 10,000 bodies with the individual masses 0.92 × 
10−8 MU that follow the ice distribution given by equation (8) with 
rmax ¼ 20 rU
I

 and β = γ03 = 1 (Methods). We note that pebble accre-
tion is negligible in our system (Methods). The result reproduces 

the mass–orbit configuration of the current Uranian satellites in  
Fig. 1. In a longer run, a more consistent result would be obtained 
(see the legend to Fig. 1). Because orbital migration of satellites is 
not important, the satellites are not trapped in resonant orbits, and 
the mass of accreted satellites is consistent with the isolation mass 
in the oligarchic growth model of ref. 18, given by (see Methods and 
equation (53)):

miso

MU
’ 0:74 ´ 10!4β!3=2γ3=203

r
20rU

! "21=4

ð11Þ

We also performed N-body simulations from ordinary Σice-
distributions with a negative radial gradient and robustly showed 
that a positive gradient of Σice is required to reproduce the current 
mass–orbit configuration19.

We have shown that the current Uranian major satellites are 
very well reproduced by the derived analytical formulas based on 
viscous spreading and cooling of the disk generated by an impact 
that is constrained by the spin period and the tilted spin, indepen-
dently of the details of the initial disk parameters. Although we have 
focused on Uranus, the model here provides a general scenario for 
satellite formation around ice giants with scaling by the mass and 
the physical radius of a central planet, which is completely differ-
ent from satellite-formation scenarios around terrestrial planets and 
gas giants. It could also be applied to the inner region of Neptune’s 
satellite system, where we can neglect the effect of Triton that may 
have been captured20. Observations suggest that many of the super-
Earths discovered in exoplanetary systems may consist of abundant 
water ice, even in close-in (warm) orbits21. The model here may also 
provide insights into possible icy satellites of super-Earths.
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Fig. 2 | The evolution of the disk of a mixture of H/He gas and water vapour and the associated ice condensation. a, The evolution of the disk  
surface density of a mixture of H/He gas and water vapour Σg. b, The evolution of the disk temperature T with α = 10−3. The solid and dashed red  
lines are the numerically solved distribution and the analytical distribution (equations (2) and (3)). In panels a and b, the upper to lower curves for  
r < 10rU represent the distributions at t = 0, 10, 102, 103 and 104 years. The initial disk for the numerical calculation is set to be centrally confined,  
Σg,imp ¼ 2:4 ´ 108ðr=rUÞ$3 kg m$2

I
 with a truncation at r = 10rU, which has Md,imp = 10−2 MU and 〈rd,imp〉 ≃ 2.3rU. In the analytical self-similar formula,  

rd0 = 3rU and Σd0 = 0.3 Σg,imp are used, according to the conversion given by equations (5) and (6). c,d, The time evolution of the ice line is plotted in panel 
d. The blue, red and light blue lines are for Md,imp = 3 × 10−3 MU, 10−2 MU and 3 × 10−2 MU, respectively. When T becomes equal to Tice, we assume that ice 
condenses with the surface density Σice = γΣg at that time (panel c), where we assumed γ = 0.3.

NATURE ASTRONOMY | VOL 4 | SEPTEMBER 2020 | 880–885 | www.nature.com/natureastronomy882

Ida et al. (2020)



円盤内での氷の凝縮

Ida et al. (2020)

240K240K
Time = 10, 102, 103, 104

Gas disk evolution model

• Local disk temperature T 
    Equilibrium between viscous heating and radiative cooling

• Viscosity ν 
   α is a constant parameter to represent the turbulence strength  

(Lynden-Bell & Pringle 1974; Hartmann+ 1998)

(Shakura & Sunyaev 1973)

• Surface density of gas (H/He/H2O) Σg  
    Surface density evolves 

    according to the viscous diffusion equation

Ida et. al. (2020) performed the simulation  
for the viscous diffusion of a vapor disk and also derived analytical formula

Ice condensation  
occurs at T ~ 240K

突直後の破⽚分布をもとに N体計算の初期条件を作成したところ、天王星の近くほど破⽚の量が多く、より⼤き

な衛星が形成されることになってしまったのです（Ishizawa et al., 2019）。 

 

「転」︓天王星周囲に形成された円盤は進化する︕ 
 これにて巨⼤天体衝突による天王星衛星形成の夢はついえたかに⾒えましたが、ここで我々はある重要な点を

⾒落としていたことに気づきます。巨⼤天体衝突で天王星の周囲にばらまかれる「破⽚」は、もともと氷成分が主
であるため、衝突直後にはほぼ全てが蒸発しているという点です。つまり、初期に天王星周囲に形成される円盤

は氷破⽚からなる固体の円盤ではなく、⽔蒸気からなるガスの円盤なのです。円盤の温度が下がれば、いずれ⽔
蒸気は凝縮して氷に戻りますが、その前にガス円盤が進化する可能性があります。 

 そこで、ガス円盤の拡散・冷却・凝縮過程を詳しく調べてみたところ、以下のような進化過程をたどることがわかり

ました（図 2）。 

① 巨⼤天体衝突直後に形成されるガス円盤は、⾮常に⾼温で質量も⼤きく、天王星から遠ざかるに従って

密度が下がる分布をしている。 

② ガス円盤は速やかに拡散し、内側で天王星に降着して質量を減らす⼀⽅、外側への拡散によって円盤の

半径が広がっていく。外側の円盤ガスが薄い領域から先に温度が下がり、外側から氷が凝縮し始める。 

③ 円盤ガスは引き続き拡散・降着により質量を減らしながら、外側から順に氷が凝縮していく。これにより、後

から凝縮する領域ほど円盤の密度が⼩さくなった状態で氷円盤に変わることになる。 

④ 最終的に形成される氷の固体円盤は、初期のガス円盤とは逆に、天王星から遠ざかるに従って密度が上

がる分布となる。 

 

 
図 2．巨⼤天体衝突後の円盤進化の概念図。 

 

 以上のとおり、巨⼤天体衝突によって天王星周囲に形成されたガス円盤は、熱⼒学的な過程を経て、全く逆
の密度分布を持った氷円盤へと進化することがわかったのです（Ida et al., 2020）。 

 

「結」（︖）︓新しい天王星衛星形成シナリオ 
 さて、それでは天王星衛星の形成に再チャレンジです。円盤進化過程も考慮した初期条件のもとで、再びN体

計算によって衛星形成過程のシミュレーションを⾏いました。その結果、天王星衛星系の特徴である「天王星から

離れるほど衛星のサイズが⼤きくなる」点を⾒事に再現することに成功しました（図 3）。 
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self-similar solution incorporating the additional Σg-dependence 
as (Methods):

Σg ¼ Σg;U0 t"21=22
#0

r
rU

! ""3=4

exp " r

rd0t
"12=22
#0

 !5=4
2

4

3

5 ð3Þ

t!0 ¼ 1þ t
tdiff0

¼ 1þ t
ð16=75Þðr2=νÞrd0 ;t¼0

ð4Þ

where Σg,U0 is the disk gas surface density at r = rU and at t = 0, tdiff0 
is the viscous diffusion timescale at rd0, and rd0 is the characteris-
tic disk radius at t = 0, respectively. We define t as the time after 
the impact-generated disk is relaxed to the quasi-steady-state self-
similar solution. The corresponding analytical T is derived from Σg 
with equation (2). The analytical solutions reproduce the numerical 
results except for the exponential tail (Fig. 2a,b).

The values of rd0 and Σg,U0 in the analytical solutions are given by 
the quantities of the impact-generated disk as (see equations (21) 
and (22) in Methods):

rd0 ’ 3:0
hrd;impi
2 rU

! "
rU ð5Þ

Σg;U0 ’ 6:5 ´ 107
hrd;impi
2rU

! "!5=4 Md;imp

10!2MU

! "
kg m!2 ð6Þ

where Md,imp is the total mass of the impact-gener-
ated disk, 〈rd,imp〉 is its mean orbital radius defined by 
hrd;impi ¼ ððJd;imp=Md;impÞ=r2UΩUÞ

2 rU
I

, Jd,imp is its total angular 
momentum, and ΩU is the disk orbital frequency at r = rU. Thus, 
we have demonstrated that the disk spreading and cooling are 
mostly determined by only two parameters, 〈rd,imp〉 and Md,imp, inde-
pendently of other details of the impact-generated disk. The past-
impact simulations1,3,4 showed that 〈rd,imp〉 ≃ 2rU and Md,imp ≃ 10−2 
MU are typical values.

When the disk temperature decays to the ice condensation tem-
perature Tice ≃ 240 K (equation (49) in Methods) for the first time, 
we deposit the condensed ice surface density by Σice = γΣg, where 
γ is the abundance of water vapour in the disk. Smooth particle 
hydrodynamics (SPH) simulations suggest γ ≃ 0.1 − 0.5 (refs. 1,3,4).  
We use γ = 0.3 as a nominal value and γ03 = γ∕0.3. With T ≃ 240 K, 
the numerically obtained Σice and deposited radius (‘ice line’) rice are 
plotted in Fig. 2c,d. Because ice condensation occurs after substan-
tial evolution of the quasi-steady-state disk, the ice distribution is 
independent of the detailed structure of the initial impact-gener-
ated disk. In particular, Σice at each r is independent of Md,imp (Fig. 
2c), and the analytical estimation of Σice below shows that it is inde-
pendent even of 〈rd,imp〉. From equation (2):

T ’ 240
α

10!3

! "1=3 Σg

4:0 ´ 102kgm!2

# $1=3 r
rU

# $!1=2

ðKÞ ð7Þ

From equation (7) with Tice ≃ 240 K, we obtain:

Σice ’ γΣg ’ 1:2 ´ 102β!1γ03
r
rU

! "3=2

kg m!2 ð8Þ

where β ¼ ðα=10#3ÞðT ice=240KÞ#3

I
. This completely reproduces 

Σice by the numerical solution (Fig. 2c).
The positive gradient of Σice (∝ r3∕2) is produced from Σg with the 

negative slope (∝ r−3∕4), because, in inner regions, the viscous heating 
is more efficient (equation (2)) and the disk must be more signifi-
cantly depleted to realize T ≲ Tice than in outer regions. The positive 
gradient implies that most of the condensed ice mass is located in 
an outermost region. Although Σice does not depend on 〈rd,imp〉 and 
Md,imp at each r, they affect how far the distribution extends, although 
the dependencies are weak. The outer truncation radius for the Σice-
distribution is evaluated as below; it reproduces the numerical results.

The ice condensation occurs when the gas temperature T exceeds 
Tice for the first time at individual r. As the gas disk further expands, 
T in the outer regions becomes well below Tice. However, icy grains 
do not condense there, because the ices have already condensed and 
the gas there is free of water vapour. The maximum radius rmax

I
 of the 

ice condensation is estimated by the intersection of equation (8) and 
the envelope curve of the superposition of the Σg–r curves at differ-
ent times (Fig. 2a). It is given by (see Methods and equation (23)):

rmax ’ 20 β
hrd;impi
2rU

! "!5=4 Md;imp

10!2MU

! "" #1=4

rU ð9Þ

From equations (8) and (9), the total condensed ice mass is:

Mice ’
R rmax

rU
2πrΣicedr ’ 0:58 ´ 10!4

´ β1=8γ03
hrd;impi
2rU

! "!5=4 Md;imp

10!2MU

! "7=8
MU

ð10Þ

which is consistent with the current total mass of Uranian satellites 
(about 1.0 × 10−4MU). Although the turbulent viscosity parameter 
α is uncertain, the α-dependence of Mice and rmax

I
 are very weak (α 

∝ β). Thus, we have demonstrated that the compact (〈rd,imp〉 ≃ 2rU) 
and massive (Md,imp ≃ 10−2MU) initial disk produces the condensed 
ice confined at a distant place, rmax ’ 20 rU

I
 with the highly reduced 

total mass (about 10−4MU). This result clearly solves the problem of 
a too massive and too compact impact-generated disk.

Once (sub-micrometre) icy grains condense in the disk, they 
coagulate with one another. In general, as the icy particles grow, 
the particles drift inward, pulled by the aerodynamic gas drag15. 
However, the disk gas density is depleted so severely before the 
ice condensation that the growth is much faster than the drift (see 
Methods) and kilometre-sized ‘satellitesimals’ are formed in  situ 
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Fig. 1 | The mass (M) and orbital radius (r) distribution of the current 
Uranian satellite systems and that predicted by N-body simulation.  
The five major Uranian satellites are represented by the filled blue circles in 
the range M ≳ 10−6 MU and r ≳ 5rU, where MU and rU are the mass and orbital 
radius of Uranus. Minor satellites with 10−8 MU to 10−7 MU are also plotted 
(tiny filled blue circles). The size of the circles is proportional to the physical 
radius. The open red circles represent the result of N-body simulations of 
accretion from condensed icy particles (10,000 bodies with masses of 0.92 
× 10−8 MU) at 1,300!years (see Methods). With a longer run, some of the 
accreted satellites would collide with each other, minor satellites would 
accrete from the small satellitesimals with M ≃ 10−8 MU at r < 10rU and the 
satellitesimals with M ≃ 10−7 MU at r > 10rU would be swept by the proto-
satellites, which is more consistent with observations of the current Uranian 
satellites. The dashed black line is the analytically derived ‘isolation mass' in 
the oligarchic growth model of ref. 18 given by equation (11).
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self-similar solution incorporating the additional Σg-dependence 
as (Methods):
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where Σg,U0 is the disk gas surface density at r = rU and at t = 0, tdiff0 
is the viscous diffusion timescale at rd0, and rd0 is the characteris-
tic disk radius at t = 0, respectively. We define t as the time after 
the impact-generated disk is relaxed to the quasi-steady-state self-
similar solution. The corresponding analytical T is derived from Σg 
with equation (2). The analytical solutions reproduce the numerical 
results except for the exponential tail (Fig. 2a,b).

The values of rd0 and Σg,U0 in the analytical solutions are given by 
the quantities of the impact-generated disk as (see equations (21) 
and (22) in Methods):

rd0 ’ 3:0
hrd;impi
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where Md,imp is the total mass of the impact-gener-
ated disk, 〈rd,imp〉 is its mean orbital radius defined by 
hrd;impi ¼ ððJd;imp=Md;impÞ=r2UΩUÞ

2 rU
I

, Jd,imp is its total angular 
momentum, and ΩU is the disk orbital frequency at r = rU. Thus, 
we have demonstrated that the disk spreading and cooling are 
mostly determined by only two parameters, 〈rd,imp〉 and Md,imp, inde-
pendently of other details of the impact-generated disk. The past-
impact simulations1,3,4 showed that 〈rd,imp〉 ≃ 2rU and Md,imp ≃ 10−2 
MU are typical values.

When the disk temperature decays to the ice condensation tem-
perature Tice ≃ 240 K (equation (49) in Methods) for the first time, 
we deposit the condensed ice surface density by Σice = γΣg, where 
γ is the abundance of water vapour in the disk. Smooth particle 
hydrodynamics (SPH) simulations suggest γ ≃ 0.1 − 0.5 (refs. 1,3,4).  
We use γ = 0.3 as a nominal value and γ03 = γ∕0.3. With T ≃ 240 K, 
the numerically obtained Σice and deposited radius (‘ice line’) rice are 
plotted in Fig. 2c,d. Because ice condensation occurs after substan-
tial evolution of the quasi-steady-state disk, the ice distribution is 
independent of the detailed structure of the initial impact-gener-
ated disk. In particular, Σice at each r is independent of Md,imp (Fig. 
2c), and the analytical estimation of Σice below shows that it is inde-
pendent even of 〈rd,imp〉. From equation (2):

T ’ 240
α

10!3
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From equation (7) with Tice ≃ 240 K, we obtain:

Σice ’ γΣg ’ 1:2 ´ 102β!1γ03
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where β ¼ ðα=10#3ÞðT ice=240KÞ#3

I
. This completely reproduces 

Σice by the numerical solution (Fig. 2c).
The positive gradient of Σice (∝ r3∕2) is produced from Σg with the 

negative slope (∝ r−3∕4), because, in inner regions, the viscous heating 
is more efficient (equation (2)) and the disk must be more signifi-
cantly depleted to realize T ≲ Tice than in outer regions. The positive 
gradient implies that most of the condensed ice mass is located in 
an outermost region. Although Σice does not depend on 〈rd,imp〉 and 
Md,imp at each r, they affect how far the distribution extends, although 
the dependencies are weak. The outer truncation radius for the Σice-
distribution is evaluated as below; it reproduces the numerical results.

The ice condensation occurs when the gas temperature T exceeds 
Tice for the first time at individual r. As the gas disk further expands, 
T in the outer regions becomes well below Tice. However, icy grains 
do not condense there, because the ices have already condensed and 
the gas there is free of water vapour. The maximum radius rmax

I
 of the 

ice condensation is estimated by the intersection of equation (8) and 
the envelope curve of the superposition of the Σg–r curves at differ-
ent times (Fig. 2a). It is given by (see Methods and equation (23)):
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which is consistent with the current total mass of Uranian satellites 
(about 1.0 × 10−4MU). Although the turbulent viscosity parameter 
α is uncertain, the α-dependence of Mice and rmax

I
 are very weak (α 

∝ β). Thus, we have demonstrated that the compact (〈rd,imp〉 ≃ 2rU) 
and massive (Md,imp ≃ 10−2MU) initial disk produces the condensed 
ice confined at a distant place, rmax ’ 20 rU

I
 with the highly reduced 

total mass (about 10−4MU). This result clearly solves the problem of 
a too massive and too compact impact-generated disk.

Once (sub-micrometre) icy grains condense in the disk, they 
coagulate with one another. In general, as the icy particles grow, 
the particles drift inward, pulled by the aerodynamic gas drag15. 
However, the disk gas density is depleted so severely before the 
ice condensation that the growth is much faster than the drift (see 
Methods) and kilometre-sized ‘satellitesimals’ are formed in  situ 
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Fig. 1 | The mass (M) and orbital radius (r) distribution of the current 
Uranian satellite systems and that predicted by N-body simulation.  
The five major Uranian satellites are represented by the filled blue circles in 
the range M ≳ 10−6 MU and r ≳ 5rU, where MU and rU are the mass and orbital 
radius of Uranus. Minor satellites with 10−8 MU to 10−7 MU are also plotted 
(tiny filled blue circles). The size of the circles is proportional to the physical 
radius. The open red circles represent the result of N-body simulations of 
accretion from condensed icy particles (10,000 bodies with masses of 0.92 
× 10−8 MU) at 1,300!years (see Methods). With a longer run, some of the 
accreted satellites would collide with each other, minor satellites would 
accrete from the small satellitesimals with M ≃ 10−8 MU at r < 10rU and the 
satellitesimals with M ≃ 10−7 MU at r > 10rU would be swept by the proto-
satellites, which is more consistent with observations of the current Uranian 
satellites. The dashed black line is the analytically derived ‘isolation mass' in 
the oligarchic growth model of ref. 18 given by equation (11).
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without radial drift. Owing to the disk gas depletion, ‘type I migra-
tion’ of proto-satellites caused by the torque from density waves in 
the disk would not be important, either (Methods). Therefore, the 
satellitesimals and satellites must be formed in situ.

The vaporization of rocks occurs at T > 2,000 K (ref. 16). Owing 
to the high vaporization or condensation temperature, silicate 
(rock components) grains should quickly re-condense, while the 
disk is still massive and compact. Our model naturally produces 
an enhanced rock-to-ice ratio of the satellites because the ices con-
dense after a reduction of water vapour by two orders of magni-
tude, whereas the rocks condense before substantial reduction has 
occurred. Although the silicates condense only in the inner region, 
they would also spread uniformly in the disk. Because silicate par-
ticles are not sticky at silicate–silicate collisions17, they do not grow 
larger than about 100 μm and they radially spread with the turbu-
lent viscous dissipation in the disk, unless the turbulence is very 
weak (see Methods). After the disk cools down and ice condensa-
tion starts, silicate particles can stick to icy particles or ices may 
condense to the silicate particle surface beyond the ice line one after 
another, which could potentially account for a relatively uniform 
rock-to-ice ratio (about O(1)) of all the satellites. Thus, our model 
may also solve the small rock-to-ice ratio produced by previous 
simulations1,3,4, although more detailed investigation is needed.

The condensed ice mass distribution peaks strongly at ! rmax
I

.  
This is consistent with the mass–orbit distribution of Uranian satel-
lites (Fig. 1). We have performed a direct three-dimensional N-body 
simulation from 10,000 bodies with the individual masses 0.92 × 
10−8 MU that follow the ice distribution given by equation (8) with 
rmax ¼ 20 rU
I

 and β = γ03 = 1 (Methods). We note that pebble accre-
tion is negligible in our system (Methods). The result reproduces 

the mass–orbit configuration of the current Uranian satellites in  
Fig. 1. In a longer run, a more consistent result would be obtained 
(see the legend to Fig. 1). Because orbital migration of satellites is 
not important, the satellites are not trapped in resonant orbits, and 
the mass of accreted satellites is consistent with the isolation mass 
in the oligarchic growth model of ref. 18, given by (see Methods and 
equation (53)):

miso

MU
’ 0:74 ´ 10!4β!3=2γ3=203

r
20rU

! "21=4

ð11Þ

We also performed N-body simulations from ordinary Σice-
distributions with a negative radial gradient and robustly showed 
that a positive gradient of Σice is required to reproduce the current 
mass–orbit configuration19.

We have shown that the current Uranian major satellites are 
very well reproduced by the derived analytical formulas based on 
viscous spreading and cooling of the disk generated by an impact 
that is constrained by the spin period and the tilted spin, indepen-
dently of the details of the initial disk parameters. Although we have 
focused on Uranus, the model here provides a general scenario for 
satellite formation around ice giants with scaling by the mass and 
the physical radius of a central planet, which is completely differ-
ent from satellite-formation scenarios around terrestrial planets and 
gas giants. It could also be applied to the inner region of Neptune’s 
satellite system, where we can neglect the effect of Triton that may 
have been captured20. Observations suggest that many of the super-
Earths discovered in exoplanetary systems may consist of abundant 
water ice, even in close-in (warm) orbits21. The model here may also 
provide insights into possible icy satellites of super-Earths.
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I
 with a truncation at r = 10rU, which has Md,imp = 10−2 MU and 〈rd,imp〉 ≃ 2.3rU. In the analytical self-similar formula,  
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without radial drift. Owing to the disk gas depletion, ‘type I migra-
tion’ of proto-satellites caused by the torque from density waves in 
the disk would not be important, either (Methods). Therefore, the 
satellitesimals and satellites must be formed in situ.

The vaporization of rocks occurs at T > 2,000 K (ref. 16). Owing 
to the high vaporization or condensation temperature, silicate 
(rock components) grains should quickly re-condense, while the 
disk is still massive and compact. Our model naturally produces 
an enhanced rock-to-ice ratio of the satellites because the ices con-
dense after a reduction of water vapour by two orders of magni-
tude, whereas the rocks condense before substantial reduction has 
occurred. Although the silicates condense only in the inner region, 
they would also spread uniformly in the disk. Because silicate par-
ticles are not sticky at silicate–silicate collisions17, they do not grow 
larger than about 100 μm and they radially spread with the turbu-
lent viscous dissipation in the disk, unless the turbulence is very 
weak (see Methods). After the disk cools down and ice condensa-
tion starts, silicate particles can stick to icy particles or ices may 
condense to the silicate particle surface beyond the ice line one after 
another, which could potentially account for a relatively uniform 
rock-to-ice ratio (about O(1)) of all the satellites. Thus, our model 
may also solve the small rock-to-ice ratio produced by previous 
simulations1,3,4, although more detailed investigation is needed.

The condensed ice mass distribution peaks strongly at ! rmax
I

.  
This is consistent with the mass–orbit distribution of Uranian satel-
lites (Fig. 1). We have performed a direct three-dimensional N-body 
simulation from 10,000 bodies with the individual masses 0.92 × 
10−8 MU that follow the ice distribution given by equation (8) with 
rmax ¼ 20 rU
I

 and β = γ03 = 1 (Methods). We note that pebble accre-
tion is negligible in our system (Methods). The result reproduces 

the mass–orbit configuration of the current Uranian satellites in  
Fig. 1. In a longer run, a more consistent result would be obtained 
(see the legend to Fig. 1). Because orbital migration of satellites is 
not important, the satellites are not trapped in resonant orbits, and 
the mass of accreted satellites is consistent with the isolation mass 
in the oligarchic growth model of ref. 18, given by (see Methods and 
equation (53)):
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We also performed N-body simulations from ordinary Σice-
distributions with a negative radial gradient and robustly showed 
that a positive gradient of Σice is required to reproduce the current 
mass–orbit configuration19.

We have shown that the current Uranian major satellites are 
very well reproduced by the derived analytical formulas based on 
viscous spreading and cooling of the disk generated by an impact 
that is constrained by the spin period and the tilted spin, indepen-
dently of the details of the initial disk parameters. Although we have 
focused on Uranus, the model here provides a general scenario for 
satellite formation around ice giants with scaling by the mass and 
the physical radius of a central planet, which is completely differ-
ent from satellite-formation scenarios around terrestrial planets and 
gas giants. It could also be applied to the inner region of Neptune’s 
satellite system, where we can neglect the effect of Triton that may 
have been captured20. Observations suggest that many of the super-
Earths discovered in exoplanetary systems may consist of abundant 
water ice, even in close-in (warm) orbits21. The model here may also 
provide insights into possible icy satellites of super-Earths.
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I
 with a truncation at r = 10rU, which has Md,imp = 10−2 MU and 〈rd,imp〉 ≃ 2.3rU. In the analytical self-similar formula,  

rd0 = 3rU and Σd0 = 0.3 Σg,imp are used, according to the conversion given by equations (5) and (6). c,d, The time evolution of the ice line is plotted in panel 
d. The blue, red and light blue lines are for Md,imp = 3 × 10−3 MU, 10−2 MU and 3 × 10−2 MU, respectively. When T becomes equal to Tice, we assume that ice 
condenses with the surface density Σice = γΣg at that time (panel c), where we assumed γ = 0.3.
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self-similar solution incorporating the additional Σg-dependence 
as (Methods):

Σg ¼ Σg;U0 t"21=22
#0

r
rU

! ""3=4

exp " r

rd0t
"12=22
#0

 !5=4
2

4

3

5 ð3Þ

t!0 ¼ 1þ t
tdiff0

¼ 1þ t
ð16=75Þðr2=νÞrd0 ;t¼0

ð4Þ

where Σg,U0 is the disk gas surface density at r = rU and at t = 0, tdiff0 
is the viscous diffusion timescale at rd0, and rd0 is the characteris-
tic disk radius at t = 0, respectively. We define t as the time after 
the impact-generated disk is relaxed to the quasi-steady-state self-
similar solution. The corresponding analytical T is derived from Σg 
with equation (2). The analytical solutions reproduce the numerical 
results except for the exponential tail (Fig. 2a,b).

The values of rd0 and Σg,U0 in the analytical solutions are given by 
the quantities of the impact-generated disk as (see equations (21) 
and (22) in Methods):

rd0 ’ 3:0
hrd;impi
2 rU

! "
rU ð5Þ

Σg;U0 ’ 6:5 ´ 107
hrd;impi
2rU

! "!5=4 Md;imp

10!2MU

! "
kg m!2 ð6Þ

where Md,imp is the total mass of the impact-gener-
ated disk, 〈rd,imp〉 is its mean orbital radius defined by 
hrd;impi ¼ ððJd;imp=Md;impÞ=r2UΩUÞ

2 rU
I

, Jd,imp is its total angular 
momentum, and ΩU is the disk orbital frequency at r = rU. Thus, 
we have demonstrated that the disk spreading and cooling are 
mostly determined by only two parameters, 〈rd,imp〉 and Md,imp, inde-
pendently of other details of the impact-generated disk. The past-
impact simulations1,3,4 showed that 〈rd,imp〉 ≃ 2rU and Md,imp ≃ 10−2 
MU are typical values.

When the disk temperature decays to the ice condensation tem-
perature Tice ≃ 240 K (equation (49) in Methods) for the first time, 
we deposit the condensed ice surface density by Σice = γΣg, where 
γ is the abundance of water vapour in the disk. Smooth particle 
hydrodynamics (SPH) simulations suggest γ ≃ 0.1 − 0.5 (refs. 1,3,4).  
We use γ = 0.3 as a nominal value and γ03 = γ∕0.3. With T ≃ 240 K, 
the numerically obtained Σice and deposited radius (‘ice line’) rice are 
plotted in Fig. 2c,d. Because ice condensation occurs after substan-
tial evolution of the quasi-steady-state disk, the ice distribution is 
independent of the detailed structure of the initial impact-gener-
ated disk. In particular, Σice at each r is independent of Md,imp (Fig. 
2c), and the analytical estimation of Σice below shows that it is inde-
pendent even of 〈rd,imp〉. From equation (2):

T ’ 240
α

10!3

! "1=3 Σg

4:0 ´ 102kgm!2

# $1=3 r
rU

# $!1=2

ðKÞ ð7Þ

From equation (7) with Tice ≃ 240 K, we obtain:

Σice ’ γΣg ’ 1:2 ´ 102β!1γ03
r
rU

! "3=2

kg m!2 ð8Þ

where β ¼ ðα=10#3ÞðT ice=240KÞ#3

I
. This completely reproduces 

Σice by the numerical solution (Fig. 2c).
The positive gradient of Σice (∝ r3∕2) is produced from Σg with the 

negative slope (∝ r−3∕4), because, in inner regions, the viscous heating 
is more efficient (equation (2)) and the disk must be more signifi-
cantly depleted to realize T ≲ Tice than in outer regions. The positive 
gradient implies that most of the condensed ice mass is located in 
an outermost region. Although Σice does not depend on 〈rd,imp〉 and 
Md,imp at each r, they affect how far the distribution extends, although 
the dependencies are weak. The outer truncation radius for the Σice-
distribution is evaluated as below; it reproduces the numerical results.

The ice condensation occurs when the gas temperature T exceeds 
Tice for the first time at individual r. As the gas disk further expands, 
T in the outer regions becomes well below Tice. However, icy grains 
do not condense there, because the ices have already condensed and 
the gas there is free of water vapour. The maximum radius rmax

I
 of the 

ice condensation is estimated by the intersection of equation (8) and 
the envelope curve of the superposition of the Σg–r curves at differ-
ent times (Fig. 2a). It is given by (see Methods and equation (23)):

rmax ’ 20 β
hrd;impi
2rU

! "!5=4 Md;imp

10!2MU

! "" #1=4

rU ð9Þ

From equations (8) and (9), the total condensed ice mass is:

Mice ’
R rmax

rU
2πrΣicedr ’ 0:58 ´ 10!4

´ β1=8γ03
hrd;impi
2rU

! "!5=4 Md;imp

10!2MU

! "7=8
MU

ð10Þ

which is consistent with the current total mass of Uranian satellites 
(about 1.0 × 10−4MU). Although the turbulent viscosity parameter 
α is uncertain, the α-dependence of Mice and rmax

I
 are very weak (α 

∝ β). Thus, we have demonstrated that the compact (〈rd,imp〉 ≃ 2rU) 
and massive (Md,imp ≃ 10−2MU) initial disk produces the condensed 
ice confined at a distant place, rmax ’ 20 rU

I
 with the highly reduced 

total mass (about 10−4MU). This result clearly solves the problem of 
a too massive and too compact impact-generated disk.

Once (sub-micrometre) icy grains condense in the disk, they 
coagulate with one another. In general, as the icy particles grow, 
the particles drift inward, pulled by the aerodynamic gas drag15. 
However, the disk gas density is depleted so severely before the 
ice condensation that the growth is much faster than the drift (see 
Methods) and kilometre-sized ‘satellitesimals’ are formed in  situ 
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Fig. 1 | The mass (M) and orbital radius (r) distribution of the current 
Uranian satellite systems and that predicted by N-body simulation.  
The five major Uranian satellites are represented by the filled blue circles in 
the range M ≳ 10−6 MU and r ≳ 5rU, where MU and rU are the mass and orbital 
radius of Uranus. Minor satellites with 10−8 MU to 10−7 MU are also plotted 
(tiny filled blue circles). The size of the circles is proportional to the physical 
radius. The open red circles represent the result of N-body simulations of 
accretion from condensed icy particles (10,000 bodies with masses of 0.92 
× 10−8 MU) at 1,300!years (see Methods). With a longer run, some of the 
accreted satellites would collide with each other, minor satellites would 
accrete from the small satellitesimals with M ≃ 10−8 MU at r < 10rU and the 
satellitesimals with M ≃ 10−7 MU at r > 10rU would be swept by the proto-
satellites, which is more consistent with observations of the current Uranian 
satellites. The dashed black line is the analytically derived ‘isolation mass' in 
the oligarchic growth model of ref. 18 given by equation (11).
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self-similar solution incorporating the additional Σg-dependence 
as (Methods):
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where Σg,U0 is the disk gas surface density at r = rU and at t = 0, tdiff0 
is the viscous diffusion timescale at rd0, and rd0 is the characteris-
tic disk radius at t = 0, respectively. We define t as the time after 
the impact-generated disk is relaxed to the quasi-steady-state self-
similar solution. The corresponding analytical T is derived from Σg 
with equation (2). The analytical solutions reproduce the numerical 
results except for the exponential tail (Fig. 2a,b).

The values of rd0 and Σg,U0 in the analytical solutions are given by 
the quantities of the impact-generated disk as (see equations (21) 
and (22) in Methods):

rd0 ’ 3:0
hrd;impi
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where Md,imp is the total mass of the impact-gener-
ated disk, 〈rd,imp〉 is its mean orbital radius defined by 
hrd;impi ¼ ððJd;imp=Md;impÞ=r2UΩUÞ

2 rU
I

, Jd,imp is its total angular 
momentum, and ΩU is the disk orbital frequency at r = rU. Thus, 
we have demonstrated that the disk spreading and cooling are 
mostly determined by only two parameters, 〈rd,imp〉 and Md,imp, inde-
pendently of other details of the impact-generated disk. The past-
impact simulations1,3,4 showed that 〈rd,imp〉 ≃ 2rU and Md,imp ≃ 10−2 
MU are typical values.

When the disk temperature decays to the ice condensation tem-
perature Tice ≃ 240 K (equation (49) in Methods) for the first time, 
we deposit the condensed ice surface density by Σice = γΣg, where 
γ is the abundance of water vapour in the disk. Smooth particle 
hydrodynamics (SPH) simulations suggest γ ≃ 0.1 − 0.5 (refs. 1,3,4).  
We use γ = 0.3 as a nominal value and γ03 = γ∕0.3. With T ≃ 240 K, 
the numerically obtained Σice and deposited radius (‘ice line’) rice are 
plotted in Fig. 2c,d. Because ice condensation occurs after substan-
tial evolution of the quasi-steady-state disk, the ice distribution is 
independent of the detailed structure of the initial impact-gener-
ated disk. In particular, Σice at each r is independent of Md,imp (Fig. 
2c), and the analytical estimation of Σice below shows that it is inde-
pendent even of 〈rd,imp〉. From equation (2):

T ’ 240
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10!3

! "1=3 Σg
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From equation (7) with Tice ≃ 240 K, we obtain:

Σice ’ γΣg ’ 1:2 ´ 102β!1γ03
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where β ¼ ðα=10#3ÞðT ice=240KÞ#3

I
. This completely reproduces 

Σice by the numerical solution (Fig. 2c).
The positive gradient of Σice (∝ r3∕2) is produced from Σg with the 

negative slope (∝ r−3∕4), because, in inner regions, the viscous heating 
is more efficient (equation (2)) and the disk must be more signifi-
cantly depleted to realize T ≲ Tice than in outer regions. The positive 
gradient implies that most of the condensed ice mass is located in 
an outermost region. Although Σice does not depend on 〈rd,imp〉 and 
Md,imp at each r, they affect how far the distribution extends, although 
the dependencies are weak. The outer truncation radius for the Σice-
distribution is evaluated as below; it reproduces the numerical results.

The ice condensation occurs when the gas temperature T exceeds 
Tice for the first time at individual r. As the gas disk further expands, 
T in the outer regions becomes well below Tice. However, icy grains 
do not condense there, because the ices have already condensed and 
the gas there is free of water vapour. The maximum radius rmax

I
 of the 

ice condensation is estimated by the intersection of equation (8) and 
the envelope curve of the superposition of the Σg–r curves at differ-
ent times (Fig. 2a). It is given by (see Methods and equation (23)):
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From equations (8) and (9), the total condensed ice mass is:
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which is consistent with the current total mass of Uranian satellites 
(about 1.0 × 10−4MU). Although the turbulent viscosity parameter 
α is uncertain, the α-dependence of Mice and rmax

I
 are very weak (α 

∝ β). Thus, we have demonstrated that the compact (〈rd,imp〉 ≃ 2rU) 
and massive (Md,imp ≃ 10−2MU) initial disk produces the condensed 
ice confined at a distant place, rmax ’ 20 rU

I
 with the highly reduced 

total mass (about 10−4MU). This result clearly solves the problem of 
a too massive and too compact impact-generated disk.

Once (sub-micrometre) icy grains condense in the disk, they 
coagulate with one another. In general, as the icy particles grow, 
the particles drift inward, pulled by the aerodynamic gas drag15. 
However, the disk gas density is depleted so severely before the 
ice condensation that the growth is much faster than the drift (see 
Methods) and kilometre-sized ‘satellitesimals’ are formed in  situ 
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Fig. 1 | The mass (M) and orbital radius (r) distribution of the current 
Uranian satellite systems and that predicted by N-body simulation.  
The five major Uranian satellites are represented by the filled blue circles in 
the range M ≳ 10−6 MU and r ≳ 5rU, where MU and rU are the mass and orbital 
radius of Uranus. Minor satellites with 10−8 MU to 10−7 MU are also plotted 
(tiny filled blue circles). The size of the circles is proportional to the physical 
radius. The open red circles represent the result of N-body simulations of 
accretion from condensed icy particles (10,000 bodies with masses of 0.92 
× 10−8 MU) at 1,300!years (see Methods). With a longer run, some of the 
accreted satellites would collide with each other, minor satellites would 
accrete from the small satellitesimals with M ≃ 10−8 MU at r < 10rU and the 
satellitesimals with M ≃ 10−7 MU at r > 10rU would be swept by the proto-
satellites, which is more consistent with observations of the current Uranian 
satellites. The dashed black line is the analytically derived ‘isolation mass' in 
the oligarchic growth model of ref. 18 given by equation (11).
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天王星衛星系の特徴1.2 Scenarios of satellite formation

Figure 1: The mass distribution of the regular satellites orbiting around Uranus. The horizontal
axis indicates the semi-major axes of the satellites normalized by the Roche limit and the vertical
axis indicates the satellite mass normalized by the Uranian mass with log scale. The satellites
are represented as circles. Satellites in the region from 5RU to 23RU are the five major satellites:
Miranda, Ariel, Umbriel, Titania and Oberon in this order from the inner side.

1.2 Scenarios of satellite formation

How these satellites are formed? Several scenarios have been proposed so far to explain the

origins of satellites including the Uranian satellites.

• Gas-starved disk model (e.g, Canup and Ward, 2002, 2006): Satellite growth and loss are

repeated in the circum-planetary disk produced by a slow inflow of gas and ice-rock solids

from solar orbit during the end stages of the formation of the Solar System. When the mass

supplies terminate, the last generation of this cycle are left in orbits.

• Viscous spreading disk model (e.g., Crida and Charnoz, 2012): A disk of solid material

around a planet, like Saturnian rings, spread due to the disk’s viscosity beyond the Roche

limit (inside which planetary tides prevent aggregation). Satellites are formed outside the

Roche limit, migrate outward due to the tidal torque from the planet and the disk.

• Giant impact scenario (e.g., Slattery et al., 1991): A planetary body collide with a planet,

materials from the two bodies are ejected around. The ejected materials form a disk around

the planet and one or more satellites are formed from the disk.

The representative studies of these scenarios are presented bellow in more detail.

2

• Uranus has a large axial tilt ~ 98˚

Uranian system

• The orbits of the regular satellites are almost on the equatorial plane
a relatively close and prograde orbit 

with little orbital inclination or eccentricity

(C) Yuya Ishizawa
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self-similar solution incorporating the additional Σg-dependence 
as (Methods):
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where Σg,U0 is the disk gas surface density at r = rU and at t = 0, tdiff0 
is the viscous diffusion timescale at rd0, and rd0 is the characteris-
tic disk radius at t = 0, respectively. We define t as the time after 
the impact-generated disk is relaxed to the quasi-steady-state self-
similar solution. The corresponding analytical T is derived from Σg 
with equation (2). The analytical solutions reproduce the numerical 
results except for the exponential tail (Fig. 2a,b).

The values of rd0 and Σg,U0 in the analytical solutions are given by 
the quantities of the impact-generated disk as (see equations (21) 
and (22) in Methods):
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where Md,imp is the total mass of the impact-gener-
ated disk, 〈rd,imp〉 is its mean orbital radius defined by 
hrd;impi ¼ ððJd;imp=Md;impÞ=r2UΩUÞ

2 rU
I

, Jd,imp is its total angular 
momentum, and ΩU is the disk orbital frequency at r = rU. Thus, 
we have demonstrated that the disk spreading and cooling are 
mostly determined by only two parameters, 〈rd,imp〉 and Md,imp, inde-
pendently of other details of the impact-generated disk. The past-
impact simulations1,3,4 showed that 〈rd,imp〉 ≃ 2rU and Md,imp ≃ 10−2 
MU are typical values.

When the disk temperature decays to the ice condensation tem-
perature Tice ≃ 240 K (equation (49) in Methods) for the first time, 
we deposit the condensed ice surface density by Σice = γΣg, where 
γ is the abundance of water vapour in the disk. Smooth particle 
hydrodynamics (SPH) simulations suggest γ ≃ 0.1 − 0.5 (refs. 1,3,4).  
We use γ = 0.3 as a nominal value and γ03 = γ∕0.3. With T ≃ 240 K, 
the numerically obtained Σice and deposited radius (‘ice line’) rice are 
plotted in Fig. 2c,d. Because ice condensation occurs after substan-
tial evolution of the quasi-steady-state disk, the ice distribution is 
independent of the detailed structure of the initial impact-gener-
ated disk. In particular, Σice at each r is independent of Md,imp (Fig. 
2c), and the analytical estimation of Σice below shows that it is inde-
pendent even of 〈rd,imp〉. From equation (2):

T ’ 240
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From equation (7) with Tice ≃ 240 K, we obtain:

Σice ’ γΣg ’ 1:2 ´ 102β!1γ03
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where β ¼ ðα=10#3ÞðT ice=240KÞ#3

I
. This completely reproduces 

Σice by the numerical solution (Fig. 2c).
The positive gradient of Σice (∝ r3∕2) is produced from Σg with the 

negative slope (∝ r−3∕4), because, in inner regions, the viscous heating 
is more efficient (equation (2)) and the disk must be more signifi-
cantly depleted to realize T ≲ Tice than in outer regions. The positive 
gradient implies that most of the condensed ice mass is located in 
an outermost region. Although Σice does not depend on 〈rd,imp〉 and 
Md,imp at each r, they affect how far the distribution extends, although 
the dependencies are weak. The outer truncation radius for the Σice-
distribution is evaluated as below; it reproduces the numerical results.

The ice condensation occurs when the gas temperature T exceeds 
Tice for the first time at individual r. As the gas disk further expands, 
T in the outer regions becomes well below Tice. However, icy grains 
do not condense there, because the ices have already condensed and 
the gas there is free of water vapour. The maximum radius rmax

I
 of the 

ice condensation is estimated by the intersection of equation (8) and 
the envelope curve of the superposition of the Σg–r curves at differ-
ent times (Fig. 2a). It is given by (see Methods and equation (23)):
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which is consistent with the current total mass of Uranian satellites 
(about 1.0 × 10−4MU). Although the turbulent viscosity parameter 
α is uncertain, the α-dependence of Mice and rmax

I
 are very weak (α 

∝ β). Thus, we have demonstrated that the compact (〈rd,imp〉 ≃ 2rU) 
and massive (Md,imp ≃ 10−2MU) initial disk produces the condensed 
ice confined at a distant place, rmax ’ 20 rU

I
 with the highly reduced 

total mass (about 10−4MU). This result clearly solves the problem of 
a too massive and too compact impact-generated disk.

Once (sub-micrometre) icy grains condense in the disk, they 
coagulate with one another. In general, as the icy particles grow, 
the particles drift inward, pulled by the aerodynamic gas drag15. 
However, the disk gas density is depleted so severely before the 
ice condensation that the growth is much faster than the drift (see 
Methods) and kilometre-sized ‘satellitesimals’ are formed in  situ 
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Fig. 1 | The mass (M) and orbital radius (r) distribution of the current 
Uranian satellite systems and that predicted by N-body simulation.  
The five major Uranian satellites are represented by the filled blue circles in 
the range M ≳ 10−6 MU and r ≳ 5rU, where MU and rU are the mass and orbital 
radius of Uranus. Minor satellites with 10−8 MU to 10−7 MU are also plotted 
(tiny filled blue circles). The size of the circles is proportional to the physical 
radius. The open red circles represent the result of N-body simulations of 
accretion from condensed icy particles (10,000 bodies with masses of 0.92 
× 10−8 MU) at 1,300!years (see Methods). With a longer run, some of the 
accreted satellites would collide with each other, minor satellites would 
accrete from the small satellitesimals with M ≃ 10−8 MU at r < 10rU and the 
satellitesimals with M ≃ 10−7 MU at r > 10rU would be swept by the proto-
satellites, which is more consistent with observations of the current Uranian 
satellites. The dashed black line is the analytically derived ‘isolation mass' in 
the oligarchic growth model of ref. 18 given by equation (11).
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・N-body simulation of accretion of condensed icy particles 

N-body simulation for the disk with positive gradient 

✦ Number of particles           →  10,000

✦ Disk size amax                     →  11RU, 20RU


✦ Disk mass Mdisk                  →  0.92 Mtot

✦ Surface density Σ(a) ∝ a-q      → -q = 1.5

・The initial condition of the circumplanetary disk is derived from the results of Ida+20  

・N-body simulations code is same as in Ishizawa+19

Semi-major axis

Su
rfa
ce
 d
en
sit
y

20RU

Σice　a1.5

Mdisk

Disk models with negative gradient

Surface density of a circumplanetary disk generated by a GI is assumed 
to have a power-low distribution

Semi-major axis

Su
rfa
ce
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en
sit
y

Mdisk
25RU

Σ　a-q Disk1 Disk2 Disk3 Disk4 Disk5 Disk6

Mdisk 4Mtot 3Mtot 3Mtot 4Mtot 3Mtot 10Mtot

q 2.15 1.50 1.95 1.95 3.0 2.15

• Disk size a                         →  RU < a < 25RU 

• Disk mass Mdisk                 →  Several times Mtot (the total satellite mass) 

• Surface density Σ(a) ∝ a-q   →  The power-index -q is varied as a parameter

These disk models have negative gradients directly inferred from the 
results of the SPH simulations (Kegerreis et al., 2018)

Ida et al. (2020)



議論：各種タイムスケールの比較
Disk diffusion timescale:

LETTERS NATURE ASTRONOMY

Because Σg / t!21=22
"0

I
, the time from the initial Σg given by equation (6) to Σg at 

the ice condensation given by equation (8) at r ≃ 20 astronomical units is:

t ’ t!0 tdiff0 ’
Σg; equationð6Þf
Σg;equationð8Þ

! "22=21
tdiff0

’ 1:7 ´ 104 β hrd;impi
2rU

! "$5=4 Md;imp

10$2MU

! "# $22=21
tdiff0

ð30Þ

Therefore, the disk diffusion timescale at the ice condensation is:

tdiff ’ t ’ 9:2 ´ 105

´ β hrd;impi
2rU

! "!5=4 Md;imp

10!2MU

! "# $22=21
α

10!3

% &!1
Ω!1

ð31Þ

Drift timescale of icy particles due to gas drag. The condensed icy grains coagulate 
with each other. As the icy particles grow, their motions become less coupled to the 
disk gas. The degree of the decoupling is represented by the Stokes number, St = 
tstopΩ, where tstop is the stopping time due to the aerodynamic gas drag. The disk gas 
rotates more slowly than the particles by a small fraction of η ’ ðcs=vKÞ2

I
(≪ 1). As 

a result of the drag from the slower-rotating disk gas, the particles drift inward with 
the drift timescale given by15:

tdrift ’
r
vr

’ r
2η vK

1þ St2

St
’ 0:5

cs
vK

! ""2 1þ St2

St
Ω"1 ð32Þ

where vr is the radial drift velocity. At r ≃ 20 rU, ðcs=vKÞ#2 ’ 16
I

 (equation (27)). 
The drift is the fastest at St ≃ 1.

Growth timescale of icy particles. The growth timescale (the mass-doubling 
timescale) of icy particles with St ≲ 1 is given by:

tgrow ’ 1
nπR2Δv

ð33Þ

where R is the particle physical radius, n is their spatial number density:

n ¼
ρp

ð4π=3ÞρmatR
3 ð34Þ

where ρp and ρmat are the spatial and material densities of the particles, and Δv is the 
relative velocity between the particles22:

Δv ’ 3αStð Þ1=2cs ð35Þ

The icy particle spatial density is given by their surface density Σice as23:

ρp ’ Σiceffiffiffiffiffi
2π

p
hp

’ Σiceffiffiffiffiffi
2π

p
hg

1þ St
α

" #1=2

ð36Þ

where hp and hg are the particle and the gas vertical scale heights. Substituting 
equations (34), (35) and (36) into equation (33), we obtain:

tgrow ’ 4
ffiffiffiffiffi
2π

p

3
ffiffiffi
3

p ρmatRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
StðStþ αÞ

p
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Ω$1 ð37Þ

where we used the disk gas scale height as given by hg ≃ csΩ−1.
In the situation we are considering, the drag law is mostly in the Stokes drag 

regime. In this case, the Stokes number is given by:

St ’ 4ρmatσcollR
2Ω

9μHHe mH cs
’ 1:5 ´ 10!6 T ice

240K

! "!1=2 R
μm

! "2 r
rU

! "!3=2

ð38Þ

where we used ρmat ≃ 103 kg∕m3, μHHe ≃ 2.4 is the mean molecular weight for H-He 
gas, mH ≃ 1.67 × 10−21 kg is the hydrogen mass, and σcol ≃ 2 × 10−11 m2 is the collision 
cross-section. Substituting equations (50) and (8) into equation (37), we obtain:

tgrow ’ 1
Stþ α
10"4

! ""1=2 γ
0:3

# $"1 α
10"3

# $ T ice

240K

! ""11=4 r
rU

! ""3=4

Ω"1 ð39Þ

Timescale comparison. Because cs < vK and α ≪ 1:

tgrow ! tdrift; tdiff ð40Þ

Around St ≃ 1:

tgrow ! tdrift ! tdiff : ð41Þ

These results imply that the condensed icy grains quickly grow to kilometre-
sized satellitesimals in situ in the H/He gas disk. The satellitesimal motions are 
decoupled from the disk gas.

Ice condensation. Icy grains condense when the vapour pressure exceeds the vapour 
saturation pressure. Because the vapour saturation pressure depends sensitively on 
temperature, the condensation condition is often described by T < Tice, where Tice is 
the condensation temperature given by24:

T ice ’
A

B! log 10½PH2O ðPaÞ% K ð42Þ

with:

A ’ 2633 ; B ’ 12:06 ð43Þ

where PH2O is the partial pressure of water vapour in the disk, given by:

PH2O ¼ γ
μall
μH2O

P ’ 0:156 γ P ð44Þ

where P is the total pressure, γ = ΣH2O∕Σg, and μall ≃ 2.8 and μH2O = 18 are the total 
and H2O mean molecular weight.

The total pressure is:

P ¼ ρgc
2
s ¼

Σgffiffiffiffiffi
2π

p csΩ ’ 61:9
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" #"1 T
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where we used:

cs ’ 8:41 ´ 102 ðμall=2:8Þ
#1=2ðT=240KÞ1=2 m s#1 ð46Þ

and Σg obtained by equation (2) is:
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From equations (42) and (48) with T = Tice, we found:

T ice ’ 2;633
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Note that the r-dependence vanishes for Tice in our disk model.

Barriers for silicate particle sticking. When collision velocity exceeds a threshold 
value (about 1 m s–1), silicate–silicate collisional sticking is inhibited by rebounding 
or fragmentation17. In the parameter range we consider, the particle collision 
velocity induced by turbulence is given by equations (35) and (46). The maximum 
Stokes number of the particles that allows the sticking is given by vbf ≃ Δv as:

Stmax ’ 1
3α

vbf
cs

! "2

’ 5 ´ 10!4 α
10!3

# $!1 vbf
1m s!1

# $2 μall
2:8

# $
T
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ð50Þ

Thus, silicates can grow only up to St ≃ 5 × 10−4 until T deceases to the ice 
condensation temperature of about 240 K. In the Stokes drag regime, it corresponds 
to a particle size of around 100 μm. The silicate particles can form satellitesimals only 
after ices condense and they stick to the icy particles or ices condense to their surface.

N-body simulation. We perform a three-dimensional N-body simulation from 
10,000 bodies (satellitesimals) with individual masses 0.92 × 10−8 MU with the 
predicted ice distribution given by equation (8) with rmax ¼ 20rU

I
 and β = γ03 = 

1. Gravitational interactions of all the bodies are included. Aerodynamical gas 
drag to satellitesimals and type I migration due to disk–planet interactions are 
neglected as below. Tidal interactions with Uranus are also neglected, because the 
timescale of our run is too short for the effect to be important. We assume perfect 
accretion and the physical radii are increased by a factor of 2 to accelerate the 
growth. Small eccentricities and inclinations are given initially. They are quickly 
relaxed by gravitational stirring and collision damping. We note that since there is 
no large reservoir of icy particles in the outer region of the disk and no icy particle 
supply from outside the Uranian system, pebble accretion is not effective and 
satellitesimals grow through mutual collisions.

When a proto-satellite grows, type I migration due to the torque from the 
density waves in the gas disk can become important. However, we show that its 
timescale is longer than the disk diffusion timescale and its effect is negligible. The 
migration timescale of a satellite with mass m is25:

tmig ’
1

2:7þ 1:1 ´ ð3=4Þ
MU

m
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MU

Σgr2

! "
cs
vK
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Ω$1 ð51Þ
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Because Σg / t!21=22
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, the time from the initial Σg given by equation (6) to Σg at 

the ice condensation given by equation (8) at r ≃ 20 astronomical units is:

t ’ t!0 tdiff0 ’
Σg; equationð6Þf
Σg;equationð8Þ
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Therefore, the disk diffusion timescale at the ice condensation is:
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Drift timescale of icy particles due to gas drag. The condensed icy grains coagulate 
with each other. As the icy particles grow, their motions become less coupled to the 
disk gas. The degree of the decoupling is represented by the Stokes number, St = 
tstopΩ, where tstop is the stopping time due to the aerodynamic gas drag. The disk gas 
rotates more slowly than the particles by a small fraction of η ’ ðcs=vKÞ2

I
(≪ 1). As 

a result of the drag from the slower-rotating disk gas, the particles drift inward with 
the drift timescale given by15:
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where vr is the radial drift velocity. At r ≃ 20 rU, ðcs=vKÞ#2 ’ 16
I

 (equation (27)). 
The drift is the fastest at St ≃ 1.

Growth timescale of icy particles. The growth timescale (the mass-doubling 
timescale) of icy particles with St ≲ 1 is given by:

tgrow ’ 1
nπR2Δv

ð33Þ

where R is the particle physical radius, n is their spatial number density:

n ¼
ρp

ð4π=3ÞρmatR
3 ð34Þ

where ρp and ρmat are the spatial and material densities of the particles, and Δv is the 
relative velocity between the particles22:

Δv ’ 3αStð Þ1=2cs ð35Þ

The icy particle spatial density is given by their surface density Σice as23:

ρp ’ Σiceffiffiffiffiffi
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where hp and hg are the particle and the gas vertical scale heights. Substituting 
equations (34), (35) and (36) into equation (33), we obtain:
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where we used the disk gas scale height as given by hg ≃ csΩ−1.
In the situation we are considering, the drag law is mostly in the Stokes drag 

regime. In this case, the Stokes number is given by:

St ’ 4ρmatσcollR
2Ω

9μHHe mH cs
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where we used ρmat ≃ 103 kg∕m3, μHHe ≃ 2.4 is the mean molecular weight for H-He 
gas, mH ≃ 1.67 × 10−21 kg is the hydrogen mass, and σcol ≃ 2 × 10−11 m2 is the collision 
cross-section. Substituting equations (50) and (8) into equation (37), we obtain:

tgrow ’ 1
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Timescale comparison. Because cs < vK and α ≪ 1:

tgrow ! tdrift; tdiff ð40Þ

Around St ≃ 1:

tgrow ! tdrift ! tdiff : ð41Þ

These results imply that the condensed icy grains quickly grow to kilometre-
sized satellitesimals in situ in the H/He gas disk. The satellitesimal motions are 
decoupled from the disk gas.

Ice condensation. Icy grains condense when the vapour pressure exceeds the vapour 
saturation pressure. Because the vapour saturation pressure depends sensitively on 
temperature, the condensation condition is often described by T < Tice, where Tice is 
the condensation temperature given by24:

T ice ’
A

B! log 10½PH2O ðPaÞ% K ð42Þ

with:

A ’ 2633 ; B ’ 12:06 ð43Þ

where PH2O is the partial pressure of water vapour in the disk, given by:

PH2O ¼ γ
μall
μH2O

P ’ 0:156 γ P ð44Þ

where P is the total pressure, γ = ΣH2O∕Σg, and μall ≃ 2.8 and μH2O = 18 are the total 
and H2O mean molecular weight.

The total pressure is:

P ¼ ρgc
2
s ¼

Σgffiffiffiffiffi
2π

p csΩ ’ 61:9
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where we used:

cs ’ 8:41 ´ 102 ðμall=2:8Þ
#1=2ðT=240KÞ1=2 m s#1 ð46Þ

and Σg obtained by equation (2) is:
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From equations (42) and (48) with T = Tice, we found:
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Note that the r-dependence vanishes for Tice in our disk model.

Barriers for silicate particle sticking. When collision velocity exceeds a threshold 
value (about 1 m s–1), silicate–silicate collisional sticking is inhibited by rebounding 
or fragmentation17. In the parameter range we consider, the particle collision 
velocity induced by turbulence is given by equations (35) and (46). The maximum 
Stokes number of the particles that allows the sticking is given by vbf ≃ Δv as:
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Thus, silicates can grow only up to St ≃ 5 × 10−4 until T deceases to the ice 
condensation temperature of about 240 K. In the Stokes drag regime, it corresponds 
to a particle size of around 100 μm. The silicate particles can form satellitesimals only 
after ices condense and they stick to the icy particles or ices condense to their surface.

N-body simulation. We perform a three-dimensional N-body simulation from 
10,000 bodies (satellitesimals) with individual masses 0.92 × 10−8 MU with the 
predicted ice distribution given by equation (8) with rmax ¼ 20rU

I
 and β = γ03 = 

1. Gravitational interactions of all the bodies are included. Aerodynamical gas 
drag to satellitesimals and type I migration due to disk–planet interactions are 
neglected as below. Tidal interactions with Uranus are also neglected, because the 
timescale of our run is too short for the effect to be important. We assume perfect 
accretion and the physical radii are increased by a factor of 2 to accelerate the 
growth. Small eccentricities and inclinations are given initially. They are quickly 
relaxed by gravitational stirring and collision damping. We note that since there is 
no large reservoir of icy particles in the outer region of the disk and no icy particle 
supply from outside the Uranian system, pebble accretion is not effective and 
satellitesimals grow through mutual collisions.

When a proto-satellite grows, type I migration due to the torque from the 
density waves in the gas disk can become important. However, we show that its 
timescale is longer than the disk diffusion timescale and its effect is negligible. The 
migration timescale of a satellite with mass m is25:
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Drift timescale of icy particles due to gas drag:
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Because Σg / t!21=22
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, the time from the initial Σg given by equation (6) to Σg at 

the ice condensation given by equation (8) at r ≃ 20 astronomical units is:
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Therefore, the disk diffusion timescale at the ice condensation is:
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Drift timescale of icy particles due to gas drag. The condensed icy grains coagulate 
with each other. As the icy particles grow, their motions become less coupled to the 
disk gas. The degree of the decoupling is represented by the Stokes number, St = 
tstopΩ, where tstop is the stopping time due to the aerodynamic gas drag. The disk gas 
rotates more slowly than the particles by a small fraction of η ’ ðcs=vKÞ2

I
(≪ 1). As 

a result of the drag from the slower-rotating disk gas, the particles drift inward with 
the drift timescale given by15:
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where vr is the radial drift velocity. At r ≃ 20 rU, ðcs=vKÞ#2 ’ 16
I

 (equation (27)). 
The drift is the fastest at St ≃ 1.

Growth timescale of icy particles. The growth timescale (the mass-doubling 
timescale) of icy particles with St ≲ 1 is given by:

tgrow ’ 1
nπR2Δv

ð33Þ

where R is the particle physical radius, n is their spatial number density:

n ¼
ρp

ð4π=3ÞρmatR
3 ð34Þ

where ρp and ρmat are the spatial and material densities of the particles, and Δv is the 
relative velocity between the particles22:

Δv ’ 3αStð Þ1=2cs ð35Þ

The icy particle spatial density is given by their surface density Σice as23:

ρp ’ Σiceffiffiffiffiffi
2π

p
hp

’ Σiceffiffiffiffiffi
2π

p
hg

1þ St
α

" #1=2

ð36Þ

where hp and hg are the particle and the gas vertical scale heights. Substituting 
equations (34), (35) and (36) into equation (33), we obtain:
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where we used the disk gas scale height as given by hg ≃ csΩ−1.
In the situation we are considering, the drag law is mostly in the Stokes drag 

regime. In this case, the Stokes number is given by:
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where we used ρmat ≃ 103 kg∕m3, μHHe ≃ 2.4 is the mean molecular weight for H-He 
gas, mH ≃ 1.67 × 10−21 kg is the hydrogen mass, and σcol ≃ 2 × 10−11 m2 is the collision 
cross-section. Substituting equations (50) and (8) into equation (37), we obtain:
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Timescale comparison. Because cs < vK and α ≪ 1:

tgrow ! tdrift; tdiff ð40Þ

Around St ≃ 1:

tgrow ! tdrift ! tdiff : ð41Þ

These results imply that the condensed icy grains quickly grow to kilometre-
sized satellitesimals in situ in the H/He gas disk. The satellitesimal motions are 
decoupled from the disk gas.

Ice condensation. Icy grains condense when the vapour pressure exceeds the vapour 
saturation pressure. Because the vapour saturation pressure depends sensitively on 
temperature, the condensation condition is often described by T < Tice, where Tice is 
the condensation temperature given by24:

T ice ’
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B! log 10½PH2O ðPaÞ% K ð42Þ

with:

A ’ 2633 ; B ’ 12:06 ð43Þ

where PH2O is the partial pressure of water vapour in the disk, given by:

PH2O ¼ γ
μall
μH2O

P ’ 0:156 γ P ð44Þ

where P is the total pressure, γ = ΣH2O∕Σg, and μall ≃ 2.8 and μH2O = 18 are the total 
and H2O mean molecular weight.

The total pressure is:

P ¼ ρgc
2
s ¼
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where we used:
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and Σg obtained by equation (2) is:
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From equations (42) and (48) with T = Tice, we found:
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Note that the r-dependence vanishes for Tice in our disk model.

Barriers for silicate particle sticking. When collision velocity exceeds a threshold 
value (about 1 m s–1), silicate–silicate collisional sticking is inhibited by rebounding 
or fragmentation17. In the parameter range we consider, the particle collision 
velocity induced by turbulence is given by equations (35) and (46). The maximum 
Stokes number of the particles that allows the sticking is given by vbf ≃ Δv as:
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Thus, silicates can grow only up to St ≃ 5 × 10−4 until T deceases to the ice 
condensation temperature of about 240 K. In the Stokes drag regime, it corresponds 
to a particle size of around 100 μm. The silicate particles can form satellitesimals only 
after ices condense and they stick to the icy particles or ices condense to their surface.

N-body simulation. We perform a three-dimensional N-body simulation from 
10,000 bodies (satellitesimals) with individual masses 0.92 × 10−8 MU with the 
predicted ice distribution given by equation (8) with rmax ¼ 20rU

I
 and β = γ03 = 

1. Gravitational interactions of all the bodies are included. Aerodynamical gas 
drag to satellitesimals and type I migration due to disk–planet interactions are 
neglected as below. Tidal interactions with Uranus are also neglected, because the 
timescale of our run is too short for the effect to be important. We assume perfect 
accretion and the physical radii are increased by a factor of 2 to accelerate the 
growth. Small eccentricities and inclinations are given initially. They are quickly 
relaxed by gravitational stirring and collision damping. We note that since there is 
no large reservoir of icy particles in the outer region of the disk and no icy particle 
supply from outside the Uranian system, pebble accretion is not effective and 
satellitesimals grow through mutual collisions.

When a proto-satellite grows, type I migration due to the torque from the 
density waves in the gas disk can become important. However, we show that its 
timescale is longer than the disk diffusion timescale and its effect is negligible. The 
migration timescale of a satellite with mass m is25:

tmig ’
1

2:7þ 1:1 ´ ð3=4Þ
MU

m

! "
MU

Σgr2

! "
cs
vK

! "2

Ω$1 ð51Þ
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Because Σg / t!21=22
"0

I
, the time from the initial Σg given by equation (6) to Σg at 

the ice condensation given by equation (8) at r ≃ 20 astronomical units is:

t ’ t!0 tdiff0 ’
Σg; equationð6Þf
Σg;equationð8Þ

! "22=21
tdiff0

’ 1:7 ´ 104 β hrd;impi
2rU

! "$5=4 Md;imp

10$2MU

! "# $22=21
tdiff0

ð30Þ

Therefore, the disk diffusion timescale at the ice condensation is:

tdiff ’ t ’ 9:2 ´ 105

´ β hrd;impi
2rU

! "!5=4 Md;imp

10!2MU

! "# $22=21
α

10!3

% &!1
Ω!1

ð31Þ

Drift timescale of icy particles due to gas drag. The condensed icy grains coagulate 
with each other. As the icy particles grow, their motions become less coupled to the 
disk gas. The degree of the decoupling is represented by the Stokes number, St = 
tstopΩ, where tstop is the stopping time due to the aerodynamic gas drag. The disk gas 
rotates more slowly than the particles by a small fraction of η ’ ðcs=vKÞ2

I
(≪ 1). As 

a result of the drag from the slower-rotating disk gas, the particles drift inward with 
the drift timescale given by15:

tdrift ’
r
vr

’ r
2η vK

1þ St2

St
’ 0:5

cs
vK

! ""2 1þ St2

St
Ω"1 ð32Þ

where vr is the radial drift velocity. At r ≃ 20 rU, ðcs=vKÞ#2 ’ 16
I

 (equation (27)). 
The drift is the fastest at St ≃ 1.

Growth timescale of icy particles. The growth timescale (the mass-doubling 
timescale) of icy particles with St ≲ 1 is given by:

tgrow ’ 1
nπR2Δv

ð33Þ

where R is the particle physical radius, n is their spatial number density:

n ¼
ρp

ð4π=3ÞρmatR
3 ð34Þ

where ρp and ρmat are the spatial and material densities of the particles, and Δv is the 
relative velocity between the particles22:

Δv ’ 3αStð Þ1=2cs ð35Þ

The icy particle spatial density is given by their surface density Σice as23:

ρp ’ Σiceffiffiffiffiffi
2π

p
hp

’ Σiceffiffiffiffiffi
2π

p
hg

1þ St
α

" #1=2

ð36Þ

where hp and hg are the particle and the gas vertical scale heights. Substituting 
equations (34), (35) and (36) into equation (33), we obtain:

tgrow ’ 4
ffiffiffiffiffi
2π

p

3
ffiffiffi
3

p ρmatRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
StðStþ αÞ

p
Σice

Ω$1 ð37Þ

where we used the disk gas scale height as given by hg ≃ csΩ−1.
In the situation we are considering, the drag law is mostly in the Stokes drag 

regime. In this case, the Stokes number is given by:

St ’ 4ρmatσcollR
2Ω

9μHHe mH cs
’ 1:5 ´ 10!6 T ice

240K

! "!1=2 R
μm

! "2 r
rU

! "!3=2

ð38Þ

where we used ρmat ≃ 103 kg∕m3, μHHe ≃ 2.4 is the mean molecular weight for H-He 
gas, mH ≃ 1.67 × 10−21 kg is the hydrogen mass, and σcol ≃ 2 × 10−11 m2 is the collision 
cross-section. Substituting equations (50) and (8) into equation (37), we obtain:

tgrow ’ 1
Stþ α
10"4

! ""1=2 γ
0:3

# $"1 α
10"3

# $ T ice

240K

! ""11=4 r
rU

! ""3=4

Ω"1 ð39Þ

Timescale comparison. Because cs < vK and α ≪ 1:

tgrow ! tdrift; tdiff ð40Þ

Around St ≃ 1:

tgrow ! tdrift ! tdiff : ð41Þ

These results imply that the condensed icy grains quickly grow to kilometre-
sized satellitesimals in situ in the H/He gas disk. The satellitesimal motions are 
decoupled from the disk gas.

Ice condensation. Icy grains condense when the vapour pressure exceeds the vapour 
saturation pressure. Because the vapour saturation pressure depends sensitively on 
temperature, the condensation condition is often described by T < Tice, where Tice is 
the condensation temperature given by24:

T ice ’
A

B! log 10½PH2O ðPaÞ% K ð42Þ

with:

A ’ 2633 ; B ’ 12:06 ð43Þ

where PH2O is the partial pressure of water vapour in the disk, given by:

PH2O ¼ γ
μall
μH2O

P ’ 0:156 γ P ð44Þ

where P is the total pressure, γ = ΣH2O∕Σg, and μall ≃ 2.8 and μH2O = 18 are the total 
and H2O mean molecular weight.

The total pressure is:

P ¼ ρgc
2
s ¼

Σgffiffiffiffiffi
2π

p csΩ ’ 61:9
α

10"3

" #"1 T
240K

$ %7=2

Pa ð45Þ

where we used:

cs ’ 8:41 ´ 102 ðμall=2:8Þ
#1=2ðT=240KÞ1=2 m s#1 ð46Þ

and Σg obtained by equation (2) is:

Σg ’ 4:02 ´ 102
α

10!3

! "!1 T
240K

# $3 r
rU

# $3=2

kgm!2 ð47Þ

Thereby:

PH2O ¼ 0:156 γP ’ 9:66γ
α

10"3

! ""1 T
240K

# $7=2

Pa ð48Þ

From equations (42) and (48) with T = Tice, we found:

T ice ’ 2;633

12:06!0:98!log 10
γ
0:3

α
10!3ð Þ!1

! " K

’ 238
1! 1

11:08log 10
γ
0:3

α
10!3ð Þ!1

! " K ’ 238þ 21 log 10
γ
0:3

α
10!3

# $!1
h i

K
ð49Þ

Note that the r-dependence vanishes for Tice in our disk model.

Barriers for silicate particle sticking. When collision velocity exceeds a threshold 
value (about 1 m s–1), silicate–silicate collisional sticking is inhibited by rebounding 
or fragmentation17. In the parameter range we consider, the particle collision 
velocity induced by turbulence is given by equations (35) and (46). The maximum 
Stokes number of the particles that allows the sticking is given by vbf ≃ Δv as:

Stmax ’ 1
3α

vbf
cs

! "2

’ 5 ´ 10!4 α
10!3

# $!1 vbf
1m s!1

# $2 μall
2:8

# $
T
240 K
# $!1

ð50Þ

Thus, silicates can grow only up to St ≃ 5 × 10−4 until T deceases to the ice 
condensation temperature of about 240 K. In the Stokes drag regime, it corresponds 
to a particle size of around 100 μm. The silicate particles can form satellitesimals only 
after ices condense and they stick to the icy particles or ices condense to their surface.

N-body simulation. We perform a three-dimensional N-body simulation from 
10,000 bodies (satellitesimals) with individual masses 0.92 × 10−8 MU with the 
predicted ice distribution given by equation (8) with rmax ¼ 20rU

I
 and β = γ03 = 

1. Gravitational interactions of all the bodies are included. Aerodynamical gas 
drag to satellitesimals and type I migration due to disk–planet interactions are 
neglected as below. Tidal interactions with Uranus are also neglected, because the 
timescale of our run is too short for the effect to be important. We assume perfect 
accretion and the physical radii are increased by a factor of 2 to accelerate the 
growth. Small eccentricities and inclinations are given initially. They are quickly 
relaxed by gravitational stirring and collision damping. We note that since there is 
no large reservoir of icy particles in the outer region of the disk and no icy particle 
supply from outside the Uranian system, pebble accretion is not effective and 
satellitesimals grow through mutual collisions.

When a proto-satellite grows, type I migration due to the torque from the 
density waves in the gas disk can become important. However, we show that its 
timescale is longer than the disk diffusion timescale and its effect is negligible. The 
migration timescale of a satellite with mass m is25:

tmig ’
1

2:7þ 1:1 ´ ð3=4Þ
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m
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Type-I migration timescale of a satellite:
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Because Σg / t!21=22
"0

I
, the time from the initial Σg given by equation (6) to Σg at 

the ice condensation given by equation (8) at r ≃ 20 astronomical units is:

t ’ t!0 tdiff0 ’
Σg; equationð6Þf
Σg;equationð8Þ

! "22=21
tdiff0

’ 1:7 ´ 104 β hrd;impi
2rU

! "$5=4 Md;imp

10$2MU

! "# $22=21
tdiff0

ð30Þ

Therefore, the disk diffusion timescale at the ice condensation is:

tdiff ’ t ’ 9:2 ´ 105

´ β hrd;impi
2rU

! "!5=4 Md;imp

10!2MU

! "# $22=21
α

10!3

% &!1
Ω!1

ð31Þ

Drift timescale of icy particles due to gas drag. The condensed icy grains coagulate 
with each other. As the icy particles grow, their motions become less coupled to the 
disk gas. The degree of the decoupling is represented by the Stokes number, St = 
tstopΩ, where tstop is the stopping time due to the aerodynamic gas drag. The disk gas 
rotates more slowly than the particles by a small fraction of η ’ ðcs=vKÞ2

I
(≪ 1). As 

a result of the drag from the slower-rotating disk gas, the particles drift inward with 
the drift timescale given by15:

tdrift ’
r
vr

’ r
2η vK

1þ St2

St
’ 0:5

cs
vK

! ""2 1þ St2

St
Ω"1 ð32Þ

where vr is the radial drift velocity. At r ≃ 20 rU, ðcs=vKÞ#2 ’ 16
I

 (equation (27)). 
The drift is the fastest at St ≃ 1.

Growth timescale of icy particles. The growth timescale (the mass-doubling 
timescale) of icy particles with St ≲ 1 is given by:

tgrow ’ 1
nπR2Δv

ð33Þ

where R is the particle physical radius, n is their spatial number density:

n ¼
ρp

ð4π=3ÞρmatR
3 ð34Þ

where ρp and ρmat are the spatial and material densities of the particles, and Δv is the 
relative velocity between the particles22:

Δv ’ 3αStð Þ1=2cs ð35Þ

The icy particle spatial density is given by their surface density Σice as23:

ρp ’ Σiceffiffiffiffiffi
2π

p
hp

’ Σiceffiffiffiffiffi
2π

p
hg

1þ St
α

" #1=2

ð36Þ

where hp and hg are the particle and the gas vertical scale heights. Substituting 
equations (34), (35) and (36) into equation (33), we obtain:

tgrow ’ 4
ffiffiffiffiffi
2π

p

3
ffiffiffi
3

p ρmatRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
StðStþ αÞ

p
Σice

Ω$1 ð37Þ

where we used the disk gas scale height as given by hg ≃ csΩ−1.
In the situation we are considering, the drag law is mostly in the Stokes drag 

regime. In this case, the Stokes number is given by:

St ’ 4ρmatσcollR
2Ω

9μHHe mH cs
’ 1:5 ´ 10!6 T ice

240K

! "!1=2 R
μm

! "2 r
rU

! "!3=2

ð38Þ

where we used ρmat ≃ 103 kg∕m3, μHHe ≃ 2.4 is the mean molecular weight for H-He 
gas, mH ≃ 1.67 × 10−21 kg is the hydrogen mass, and σcol ≃ 2 × 10−11 m2 is the collision 
cross-section. Substituting equations (50) and (8) into equation (37), we obtain:

tgrow ’ 1
Stþ α
10"4

! ""1=2 γ
0:3

# $"1 α
10"3

# $ T ice

240K

! ""11=4 r
rU

! ""3=4

Ω"1 ð39Þ

Timescale comparison. Because cs < vK and α ≪ 1:

tgrow ! tdrift; tdiff ð40Þ

Around St ≃ 1:

tgrow ! tdrift ! tdiff : ð41Þ

These results imply that the condensed icy grains quickly grow to kilometre-
sized satellitesimals in situ in the H/He gas disk. The satellitesimal motions are 
decoupled from the disk gas.

Ice condensation. Icy grains condense when the vapour pressure exceeds the vapour 
saturation pressure. Because the vapour saturation pressure depends sensitively on 
temperature, the condensation condition is often described by T < Tice, where Tice is 
the condensation temperature given by24:

T ice ’
A

B! log 10½PH2O ðPaÞ% K ð42Þ

with:

A ’ 2633 ; B ’ 12:06 ð43Þ

where PH2O is the partial pressure of water vapour in the disk, given by:

PH2O ¼ γ
μall
μH2O

P ’ 0:156 γ P ð44Þ

where P is the total pressure, γ = ΣH2O∕Σg, and μall ≃ 2.8 and μH2O = 18 are the total 
and H2O mean molecular weight.

The total pressure is:

P ¼ ρgc
2
s ¼

Σgffiffiffiffiffi
2π

p csΩ ’ 61:9
α

10"3

" #"1 T
240K

$ %7=2

Pa ð45Þ

where we used:

cs ’ 8:41 ´ 102 ðμall=2:8Þ
#1=2ðT=240KÞ1=2 m s#1 ð46Þ

and Σg obtained by equation (2) is:

Σg ’ 4:02 ´ 102
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kgm!2 ð47Þ

Thereby:

PH2O ¼ 0:156 γP ’ 9:66γ
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From equations (42) and (48) with T = Tice, we found:

T ice ’ 2;633
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Note that the r-dependence vanishes for Tice in our disk model.

Barriers for silicate particle sticking. When collision velocity exceeds a threshold 
value (about 1 m s–1), silicate–silicate collisional sticking is inhibited by rebounding 
or fragmentation17. In the parameter range we consider, the particle collision 
velocity induced by turbulence is given by equations (35) and (46). The maximum 
Stokes number of the particles that allows the sticking is given by vbf ≃ Δv as:

Stmax ’ 1
3α

vbf
cs

! "2

’ 5 ´ 10!4 α
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# $!1 vbf
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Thus, silicates can grow only up to St ≃ 5 × 10−4 until T deceases to the ice 
condensation temperature of about 240 K. In the Stokes drag regime, it corresponds 
to a particle size of around 100 μm. The silicate particles can form satellitesimals only 
after ices condense and they stick to the icy particles or ices condense to their surface.

N-body simulation. We perform a three-dimensional N-body simulation from 
10,000 bodies (satellitesimals) with individual masses 0.92 × 10−8 MU with the 
predicted ice distribution given by equation (8) with rmax ¼ 20rU

I
 and β = γ03 = 

1. Gravitational interactions of all the bodies are included. Aerodynamical gas 
drag to satellitesimals and type I migration due to disk–planet interactions are 
neglected as below. Tidal interactions with Uranus are also neglected, because the 
timescale of our run is too short for the effect to be important. We assume perfect 
accretion and the physical radii are increased by a factor of 2 to accelerate the 
growth. Small eccentricities and inclinations are given initially. They are quickly 
relaxed by gravitational stirring and collision damping. We note that since there is 
no large reservoir of icy particles in the outer region of the disk and no icy particle 
supply from outside the Uranian system, pebble accretion is not effective and 
satellitesimals grow through mutual collisions.

When a proto-satellite grows, type I migration due to the torque from the 
density waves in the gas disk can become important. However, we show that its 
timescale is longer than the disk diffusion timescale and its effect is negligible. The 
migration timescale of a satellite with mass m is25:
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cs < vK, α ≪ 1, St ≃ 1 tgrow ≪ tdrift ≪ tdiff ≪ tmig

Ida et al. (2020)



本日の内容

起：太陽の周りを横倒しで回る天王星系 

承：巨大天体衝突で天王星の衛星は作れるか？ 

転：天王星周囲に形成された円盤は進化する！ 

結：新しい天王星衛星形成シナリオの完成（？）

Slattery et al., Icarus (1992),  Kegerreis et al., ApJ (2018)

Ishizawa, Sasaki & Hosono, ApJ (2019)

Ida, Ueta, Sasaki & Ishizawa, Nature Astronomy (2020)
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天王星衛星形成シナリオの完成に向けてGI scenario for the uranian satellite formation

Protoplanets collide each other

SPH method

Satellite formation
N-body

Disk evolution

• The current satellites could not form from a debris disk with a negative gradient  
• The evolution of an impact-generated disk is not considered 

In Chapter 1,

Here we performed an N-body simulation for the condensed ice disk which 
suggested by the evolution of the impact-generated disk of a mixture of water 
vapor and H/He gas until the disk cools down enough for ice condensation

✦ A disk generated by a giant impact is mostly vaporized 
✦ It may undergo viscous diffusion until the re-condensation of materials 

Ida et al. (2020) Ishizawa et al. (2019) 
Ida et al. (2020) 
Woo et al. (2022)

Slattery et al. (1992) 
Kegerreis et al. (2018) 
Kurosaki & Inutsuka (2019) 
Reinhardt et al. (2020) 
Woo et al. (2022) (C) Yuya Ishizawa



大量のＮ体計算による統計的検証
N-body simulation of Uranian satellites’ formation 3

2.2. Initial condition of the debris disk

We adopted the initial debris disk model based on
Ida et al. (2020). They solved the thermal evolution of
the gas disk and derived the profile of the debris disk
that forms after the gas disk di↵uses and cools. They
found that the surface density profile of the solid disk of
ice was proportional to the 1.5 power of the semimajor
axis. Therefore we fixed the power index of the surface
density of the initial disk to be 1.5. The total amount
of ice, Mice

1, and the outer edge of the solid disk of ice,
rmax, were also determined analytically:

Mice ' 0.58⇥10�4�1/8
⇣ �

0.3

⌘✓
hrd,impi
2rU

◆�35/32 ✓ Md,imp

10�2MU

◆7/8

MU,

(4)

rmax ' 20

"
�

✓
hrd,impi
2rU

◆�5/4 ✓ Md,imp

10�2MU

◆#1/4

rU, (5)

where � = (↵/10�3)(Tice/240K), ↵ is a constant pa-
rameter to represent the turbulence strength (Shakura
& Sunyaev 1973), Tice is ice condensation temperature,
and � is the abundance of water vapor of the gas disk,
respectively. We used � = 1 and � = 0.3 as nominal val-
ues. Md,imp is the total mass of the gas disk generated
by the giant impact, while hrd,impi is its mean orbital ra-
dius defined by hrd,impi = ((Jd,imp/Md,imp)/r2U⌦U)2rU.
Jd,imp is its total angular momentum, and ⌦U is the disk
orbital frequency at r = rU.
Uranian satellites are consist of not only ice but also

rock components. So we set the total disk mass Mdisk

from Mice as follows.

Mdisk =
⇢satellites

⇢ice

⇢rock � ⇢ice
⇢rock � ⇢satellites

Mice, (6)

where ⇢rock is the density of rock and ⇢ice is the density
of ice. We adapted ⇢rock = 3g/cm3 and ⇢ice = 1g/cm3,
which gives Mdisk = 1.75Mice. We assumed that the
rock-to-ice ratios of the satellitesimals were constant re-
gardless of location.

3. RESULTS

3.1. Parameters

First, we show the parameters used in this study.
Mdisk and rmax were obtained by substituting Md,imp =
0.01 ⇠ 0.03MU and hrd,impi = 2.00 ⇠ 3.00rU into Eqs.
(4) and (5). These values are in agreement with the re-
sults of the SPH simulations (Kegerreis et al. 2018). The

1 The equation of Mice in Ida et al. (2020) was Mice '

0.58⇥10�4�1/8
� �
0.3

� ⇣ hrd,impi
2rU

⌘�5/4 ⇣ Md,imp

10�2MU

⌘7/8
MU, but the

power index of hrd,impi was miscalculated, so we corrected it.

Table 1. Model sets of initial condition

Run Mdisk(MU) rmax(rU)

1 1.02⇥ 10�4 20

2 8.92⇥ 10�5 19.3

3 7.95⇥ 10�5 18.7

4 7.16⇥ 10�5 18.1

5 6.51⇥ 10�5 17.6

6 1.44⇥ 10�4 22.1

7 1.27⇥ 10�4 21.3

8 1.13⇥ 10�4 20.6

9 1.02⇥ 10�4 20.0

10 9.29⇥ 10�5 19.5

11 1.86⇥ 10�4 23.8

12 1.64⇥ 10�4 22.9

13 1.46⇥ 10�4 22.2

14 1.31⇥ 10�4 21.5

15 1.19⇥ 10�4 21.0

16 2.26⇥ 10�4 25.1

17 1.99⇥ 10�4 24.2

18 1.77⇥ 10�4 23.5

19 1.60⇥ 10�4 22.8

20 1.45⇥ 10�4 22.2

21 2.65⇥ 10�4 26.3

22 2.33⇥ 10�4 25.4

23 2.08⇥ 10�4 24.5

24 1.87⇥ 10�4 23.8

25 1.70⇥ 10�4 23.2

initial conditions of the disks are summarized in Table
1.

3.2. Typical results

Figure 1 shows a typical result of our N -body simu-
lations. While four large satellites (� 10�1Mtot) and a
middle-sized satellite (⇠ 10�2Mtot) are formed between
5rU to 25rU, their locations are slightly di↵erent from
the observation. One of them locates at ⇠ 13rU, be-
tween the actual orbits of Umbriel and Titania. There
is also a satellite produced outside of 25rU where no
large satellites have been found by the observation.
The eccentricities of the produced satellites are about

one order of magnitude larger than those of the actual
satellites (see Figure2). There is a possibility that the
gas drug or the tidal damping would reduce the eccen-
tricities. The eccentricity and orbital inclination of the
outer (> 25rU) satellite is also large. It wold indicate
that the outer satellite is the result of scattering by the
larger inner satellites.
We show some of other typical results in Figure 3.

The smaller rmax is, the inner region the satellites are
formed. The smaller Mdisk is, the smaller the masses of

Kihara et al., to be submitted



典型的な計算結果の１例
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Figure 1. The result of run6 at 3 ⇥ 107TK. The horizontal axis shows the semi-major axis of the satellite and the vertical
axis shows the mass. The blue circles are the results of the simulation. The red circles are Miranda, Ariel, Umbriel, Titania,
and Oberon from the inside out, the five largest satellites of Uranus. The sizes of the circles correspond to the masses of the
satellites.

(a) The eccentricity of each satellite (b) The orbital inclination of each satellite

Figure 2. (a) The eccentricity of each satellite of the result of run6. (b) The orbital inclination of each satellite of the result of
run6. The blue circles are the results of the simulation. The red circles are the five largest satellites of Uranus. The inclination
of Miranda is so large (⇠ 4.2�) that not shown here.
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Figure 1. The result of run6 at 3 ⇥ 107TK. The horizontal axis shows the semi-major axis of the satellite and the vertical
axis shows the mass. The blue circles are the results of the simulation. The red circles are Miranda, Ariel, Umbriel, Titania,
and Oberon from the inside out, the five largest satellites of Uranus. The sizes of the circles correspond to the masses of the
satellites.

(a) The eccentricity of each satellite (b) The orbital inclination of each satellite

Figure 2. (a) The eccentricity of each satellite of the result of run6. (b) The orbital inclination of each satellite of the result of
run6. The blue circles are the results of the simulation. The red circles are the five largest satellites of Uranus. The inclination
of Miranda is so large (⇠ 4.2�) that not shown here.

Kihara et al., to be submitted
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Figure 4. The red circles are Ariel, Umbriel, Titania, and Oberon. The blue circles are the average values of produced satellites,
and error bars are 1�. Numbers of extracted runs are 6, 8, 9, 13, 15, 19, and 23.

and Titania (⇠ 13rU), and the eccentricities of the satel-
lites are about one order of magnitude larger than those
of the actual satellites. So, it would be possible that the
satellites are scattered with each other by gravitational
interactions via orbital crossing on a timescale of about
106 years, and the satellites move into the current orbits.
Then, the gas drug or the tidal damping would reduce
their eccentricities and stabilize the system.

4.2. Satellites outside the Oberon

Figure 5 shows the current Uranian satellites system
known from observations. No large prograde satellites
have been discovered outside of Oberon (only one pro-
grade satellite is discovered outside of Oberon, but it
is very small), while our simulations always produced
several satellites there. Since very small satellites have
been discovered outside of 100rU, if satellites actually
exist at 30� 100rU, they must have been discovered by
observations. So we need the mechanisms to resolve the
discrepancy between our simulation results and the cur-
rent satellites system.
First, we considered the possibility that these outer

satellites would collide with Oberon. If the outer satel-
lites have been scattered by the inner large satellites,
their eccentricity would be large and they would collide
with the Oberon near their perigee. To examine this, we

calculated the eccentricities and perigee distances of the
outer satellites, and compared Oberon’s semi-major axis
with the perigee distances of each satellite. Then, we
found almost all outer satellites have larger perigee dis-
tances than the Oberon’s orbit. Therefore, these outer
satellites would remain without collisions.
The other possibility is the protoplanets’ encounters.

Protoplanets may pass through the vicinity of Uranus
after their satellites had been formed. Ida et al. (2000)
showed that the high eccentricity and inclination ob-
served in the outer part of the Edgeworth-Kuiper belt
(42 au) can be explained by early stellar encounters to
the solary system. A similar event on Uranus, though
on a very di↵erent scale, would increase the eccentricity
of the outer satellites and could result in a collision with
Oberon. In order to confirm the scenario, we need to
estimate the probability of such encounters and inves-
tigate the gravitational interactions between the proto-
planet and the satellites.

5. CONCLUSION

We performedN -body simulations based on the debris
disk model of Ida et al. (2020) and investigated whether
we could reproduce the current Uranian satellite system.
We found that, in most cases, the smaller satellites were
formed in the inner area and the larger ones in the outer

Kihara et al., to be submitted

• Averagely four large satellites are 
formed and the smaller satellites 
locate in the inner area and the 
larger ones in the outer area. 

• Only one satellite is formed 
around Ariel and Umbriel’s orbits. 

• A large satellite is robustly formed 
around 13 Ru where between 
Umbriel and Titania’s location. 

• Several satellites are formed 
outside of Oberon where no 
satellites have been discovered.

Ariel
Umbriel

Titania

Oberon
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the satellites are. It shows that the smaller satellites are
formed in the inner area and the larger ones in the outer
area. It is consistent with the current Uranian satellites
system. On the other hand, several satellites are always
formed outside of Oberon where no satellites have been
found. The eccentricities of the produced satellites are
generally larger than the actual satellites’ values in any
result.

3.3. Comparison with the observation

We compared the calculated results with the observed
values for the major satellites, except for Miranda which
is the smallest satellite of them. Miranda’s mass is more
than an order of magnitude smaller than that of other
major satellites, so it was di�cult to deal with in a uni-
fied manner.
We set the threshold as half of Umbriel’s mass and

counted the number of the large satellites for all runs.
The average number of the large satellites is 3.68±0.38,
which is consistent with the observation. Then, we ex-
tracted only the results which have the four large satel-
lites with masses greater than half of Umbriel’s inside of
25rU. For these four satellites, we calculated the aver-
age values of the semi-major axis and the mass of each
satellite.
Figure 4 shows the average mass and semi-major axis

of these satellites. The average mass of the outer satel-
lite is larger than that of the inner satellite. It is con-
sistent with the observation. However, only one large
satellite is formed around Ariel and Umbriel’s orbits,
and a large satellite is robustly formed between the ac-
tual orbits of Umbriel and Titania (⇠ 13rU).
We summarize the points those agree and disagree

with the observation. Three points those are consis-
tent with the observation results are: (1) For most of
the parameters, multiple satellite systems those have
comparable masses to the Uranian major satellites are
formed, (2) the average number of the large satellites
is about four, and (3) the smaller satellites are on the
inside and the larger ones on the outside. On the other
hand, three points of disagreement with the observations
are: (1) Only one satellite is formed around 9rU, (2) a
large satellite is formed around 13rU, and (3) there are
several satellites outside of Oberon.

4. DISCUSSION

4.1. Stability of satellite systems

First, we consider the stability of the produced satel-
lite systems. We took four large satellites whose mass
were bigger than half of Umbriel’s mass from the re-
sult of run6 and derived the angular momentum deficit
(AMD). AMD is a quantity devised to study the dynam-

ical stability of the solar system (Laskar 1997). We used
the normalized angular momentum deficit (NAMD),
which is modified version of the AMD (Turrini et al.
2020). The definition of NAMD is
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where mk is satellite’s mass, ak is semi-major axis, ek
is eccentricity, and ik is orbital inclination, respectively.
Generally, more populated systems (the number of satel-
litesN � 4) has lower NAMD values than less populated
systems (N  3). The value of NAMD calculated for
four large satellites in run6 is 1.1 ⇥ 10�3. It is consis-
tent with the average value of the systems with N � 4.
We also calculated NAMD in other results. The average
value is 1.2⇥10�3 and the maximum value is 4.0⇥10�3.
This indicate that all the NAMD in the simulation re-
sults satisfy the condition for a stable and long-lasting
existence of a multi-satellite system.
Next, we calculated the orbit-crossing time. The sta-

bility of systems of more than two satellites depends
on the semi-major axis di↵erence measured by mutual
Hill radii (Chambers et al. 1996). The orbit-crossing
time can be calculated by following equation (Zhou et al.
2007):
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where e and m are the average values of the eccentricity
and mass of the two satellites, respectively. h = (a2 �
a1)/(a2+a1), where a1 and a2 are the semi-major axes of
the two satellites. We calculated the orbit-crossing times
of three neighboring pairs of four large satellites from
the result of run6. In order from the inner pair, k0 =
12.0, 9.0, 8.7 and Tc = 3.3⇥107, 1.7⇥106, 7.5⇥105yr. It
is conceivable that satellite orbit crossing might occur in
a short timescale. We calculated k0 and TC for the ac-
tual Uranian massive satellties, Ariel, Umbriel, Titania,
and Oberon and found them to be k0 = 15.4, 18.4, 9.9
and TC = 1.8⇥ 1010, 3.1⇥ 1011, 8.2⇥ 107 yr.
Therefore, TC of the produced satellites are several

orders of magnitude smaller than those of the actual
Uranian system. The reason for this would be that the
simulations had produced a satellite between Umbriel
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the satellites are. It shows that the smaller satellites are
formed in the inner area and the larger ones in the outer
area. It is consistent with the current Uranian satellites
system. On the other hand, several satellites are always
formed outside of Oberon where no satellites have been
found. The eccentricities of the produced satellites are
generally larger than the actual satellites’ values in any
result.

3.3. Comparison with the observation

We compared the calculated results with the observed
values for the major satellites, except for Miranda which
is the smallest satellite of them. Miranda’s mass is more
than an order of magnitude smaller than that of other
major satellites, so it was di�cult to deal with in a uni-
fied manner.
We set the threshold as half of Umbriel’s mass and

counted the number of the large satellites for all runs.
The average number of the large satellites is 3.68±0.38,
which is consistent with the observation. Then, we ex-
tracted only the results which have the four large satel-
lites with masses greater than half of Umbriel’s inside of
25rU. For these four satellites, we calculated the aver-
age values of the semi-major axis and the mass of each
satellite.
Figure 4 shows the average mass and semi-major axis

of these satellites. The average mass of the outer satel-
lite is larger than that of the inner satellite. It is con-
sistent with the observation. However, only one large
satellite is formed around Ariel and Umbriel’s orbits,
and a large satellite is robustly formed between the ac-
tual orbits of Umbriel and Titania (⇠ 13rU).
We summarize the points those agree and disagree

with the observation. Three points those are consis-
tent with the observation results are: (1) For most of
the parameters, multiple satellite systems those have
comparable masses to the Uranian major satellites are
formed, (2) the average number of the large satellites
is about four, and (3) the smaller satellites are on the
inside and the larger ones on the outside. On the other
hand, three points of disagreement with the observations
are: (1) Only one satellite is formed around 9rU, (2) a
large satellite is formed around 13rU, and (3) there are
several satellites outside of Oberon.

4. DISCUSSION

4.1. Stability of satellite systems

First, we consider the stability of the produced satel-
lite systems. We took four large satellites whose mass
were bigger than half of Umbriel’s mass from the re-
sult of run6 and derived the angular momentum deficit
(AMD). AMD is a quantity devised to study the dynam-

ical stability of the solar system (Laskar 1997). We used
the normalized angular momentum deficit (NAMD),
which is modified version of the AMD (Turrini et al.
2020). The definition of NAMD is
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where mk is satellite’s mass, ak is semi-major axis, ek
is eccentricity, and ik is orbital inclination, respectively.
Generally, more populated systems (the number of satel-
litesN � 4) has lower NAMD values than less populated
systems (N  3). The value of NAMD calculated for
four large satellites in run6 is 1.1 ⇥ 10�3. It is consis-
tent with the average value of the systems with N � 4.
We also calculated NAMD in other results. The average
value is 1.2⇥10�3 and the maximum value is 4.0⇥10�3.
This indicate that all the NAMD in the simulation re-
sults satisfy the condition for a stable and long-lasting
existence of a multi-satellite system.
Next, we calculated the orbit-crossing time. The sta-

bility of systems of more than two satellites depends
on the semi-major axis di↵erence measured by mutual
Hill radii (Chambers et al. 1996). The orbit-crossing
time can be calculated by following equation (Zhou et al.
2007):

log

✓
Tc

1yr

◆
= A+B log

✓
k0
2.3

◆
, (8)

where Tc is the orbit-crossing time and k0 is the semi-
major axis di↵erence measured by mutual Hill radii. A
and B are the constants which are determined by

A = �2 +
e

h
� 0.27 log

m

MU
, (9)

B = 18.7+1.1 log
m

MU
�
✓
16.8 + 1.2 log

m

MU

◆
e

h
, (10)

where e and m are the average values of the eccentricity
and mass of the two satellites, respectively. h = (a2 �
a1)/(a2+a1), where a1 and a2 are the semi-major axes of
the two satellites. We calculated the orbit-crossing times
of three neighboring pairs of four large satellites from
the result of run6. In order from the inner pair, k0 =
12.0, 9.0, 8.7 and Tc = 3.3⇥107, 1.7⇥106, 7.5⇥105yr. It
is conceivable that satellite orbit crossing might occur in
a short timescale. We calculated k0 and TC for the ac-
tual Uranian massive satellties, Ariel, Umbriel, Titania,
and Oberon and found them to be k0 = 15.4, 18.4, 9.9
and TC = 1.8⇥ 1010, 3.1⇥ 1011, 8.2⇥ 107 yr.
Therefore, TC of the produced satellites are several

orders of magnitude smaller than those of the actual
Uranian system. The reason for this would be that the
simulations had produced a satellite between Umbriel
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the satellites are. It shows that the smaller satellites are
formed in the inner area and the larger ones in the outer
area. It is consistent with the current Uranian satellites
system. On the other hand, several satellites are always
formed outside of Oberon where no satellites have been
found. The eccentricities of the produced satellites are
generally larger than the actual satellites’ values in any
result.

3.3. Comparison with the observation

We compared the calculated results with the observed
values for the major satellites, except for Miranda which
is the smallest satellite of them. Miranda’s mass is more
than an order of magnitude smaller than that of other
major satellites, so it was di�cult to deal with in a uni-
fied manner.
We set the threshold as half of Umbriel’s mass and

counted the number of the large satellites for all runs.
The average number of the large satellites is 3.68±0.38,
which is consistent with the observation. Then, we ex-
tracted only the results which have the four large satel-
lites with masses greater than half of Umbriel’s inside of
25rU. For these four satellites, we calculated the aver-
age values of the semi-major axis and the mass of each
satellite.
Figure 4 shows the average mass and semi-major axis

of these satellites. The average mass of the outer satel-
lite is larger than that of the inner satellite. It is con-
sistent with the observation. However, only one large
satellite is formed around Ariel and Umbriel’s orbits,
and a large satellite is robustly formed between the ac-
tual orbits of Umbriel and Titania (⇠ 13rU).
We summarize the points those agree and disagree

with the observation. Three points those are consis-
tent with the observation results are: (1) For most of
the parameters, multiple satellite systems those have
comparable masses to the Uranian major satellites are
formed, (2) the average number of the large satellites
is about four, and (3) the smaller satellites are on the
inside and the larger ones on the outside. On the other
hand, three points of disagreement with the observations
are: (1) Only one satellite is formed around 9rU, (2) a
large satellite is formed around 13rU, and (3) there are
several satellites outside of Oberon.

4. DISCUSSION

4.1. Stability of satellite systems

First, we consider the stability of the produced satel-
lite systems. We took four large satellites whose mass
were bigger than half of Umbriel’s mass from the re-
sult of run6 and derived the angular momentum deficit
(AMD). AMD is a quantity devised to study the dynam-

ical stability of the solar system (Laskar 1997). We used
the normalized angular momentum deficit (NAMD),
which is modified version of the AMD (Turrini et al.
2020). The definition of NAMD is
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where mk is satellite’s mass, ak is semi-major axis, ek
is eccentricity, and ik is orbital inclination, respectively.
Generally, more populated systems (the number of satel-
litesN � 4) has lower NAMD values than less populated
systems (N  3). The value of NAMD calculated for
four large satellites in run6 is 1.1 ⇥ 10�3. It is consis-
tent with the average value of the systems with N � 4.
We also calculated NAMD in other results. The average
value is 1.2⇥10�3 and the maximum value is 4.0⇥10�3.
This indicate that all the NAMD in the simulation re-
sults satisfy the condition for a stable and long-lasting
existence of a multi-satellite system.
Next, we calculated the orbit-crossing time. The sta-

bility of systems of more than two satellites depends
on the semi-major axis di↵erence measured by mutual
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where e and m are the average values of the eccentricity
and mass of the two satellites, respectively. h = (a2 �
a1)/(a2+a1), where a1 and a2 are the semi-major axes of
the two satellites. We calculated the orbit-crossing times
of three neighboring pairs of four large satellites from
the result of run6. In order from the inner pair, k0 =
12.0, 9.0, 8.7 and Tc = 3.3⇥107, 1.7⇥106, 7.5⇥105yr. It
is conceivable that satellite orbit crossing might occur in
a short timescale. We calculated k0 and TC for the ac-
tual Uranian massive satellties, Ariel, Umbriel, Titania,
and Oberon and found them to be k0 = 15.4, 18.4, 9.9
and TC = 1.8⇥ 1010, 3.1⇥ 1011, 8.2⇥ 107 yr.
Therefore, TC of the produced satellites are several

orders of magnitude smaller than those of the actual
Uranian system. The reason for this would be that the
simulations had produced a satellite between Umbriel

The orbit-crossing time Zhou et al. (2007)
① ② ③

① 

② 

③

k0 = 12.0, Tc = 3.3 × 107 [yr]

k0 = 9.0, Tc = 1.7 × 106 [yr]

k0 = 8.7, Tc = 7.5 × 105 [yr]

The produced satellites will be scattered with each other by 
gravitational interactions via orbital crossing on a timescale 
about 106 years, then move into the current orbits.
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Produced via accretion Capture ?

No satellites between 25-150Ru

1. The outer satellites will collide with Oberon ? 
  —> No; they have larger perigee distances than the  
         Oberon’s orbit.

2. Protoplanets’ encounters to the Uranian system ? 
  —> Possibly; we need to estimate the probability of  
         such encounter events.



本日の内容

起：太陽の周りを横倒しで回る天王星系 

承：巨大天体衝突で天王星の衛星は作れるか？ 

転：天王星周囲に形成された円盤は進化する！ 

結：新しい天王星衛星形成シナリオの完成（？）
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