揮発性元素同位体組成から探る 火星の形成と表層環境進化

共同研究者:杉田精司²,三浦弥生³,長勇一郎²,吉田辰哉⁴, François Leblanc⁵, 寺田直樹4, 中川広務4, 齋藤義文6, 笠原慧2, 吉岡和夫2, 熊谷英憲7, 岩田尚能8

1: ELSI, 2: Univ. Tokyo, 3: Earthquake Res. Inst., 4: Tohoku Univ., 5: LATMOS/CNRS, Sorbonne Université, UVSQ, 6: ISAS/JXA, 7: JAMTEC, 8: Yamagata Univ.

黒川宏之1

● 火星大気中のネオン →

- ●揮発性元素に富んだマントル
- ◎形成過程への制約(円盤ガス捕獲, 材料物質)
- 初期火星の表層環境
- ◎将来火星探査による ネオンその場計測の検討・機器開発

2

集積天体中の揮発性元素 (二次大気): C,Nなど重たい元素に富む

惑星形成と揮発性元素の起源

原始惑星系円盤ガス (一次大気): 軽いH, Heに富む (太陽組成)

系外惑星の質量と半径の分布 (精度の良いものだけプロット)

希ガス:

宙	'XX'	小上
]牛	・ナし	

V·T·E	Goldschmidt classification in the periodic table																		
	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Group → ↓ Period																			
1	1 H																		2 He
2	3 Li	4 Be												5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg												13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	*	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
57 58 59 60 61 62 63 64 65 66 67 68 69 70																			
			*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
* 89 90 91 92 93 94 95 96 97 98 99 Ac Th Pa U Np Pu Am Cm Bk Cf Es								99 Es	100 Fm	101 Md	102 No								
		Go	ldschn	nidt cla	ssificat	ion:	Lithoph	ile	Sidero	phile	Chalc	ophile	Atrr	nophile	S	ynthetic			

元素のトレーサー

Figure from Wikipedia

Williams & Mukhopadhyay (2019) *Nature*

地球マントルの揮発性元素同位体組成

e.g., Yokota & Marty (2014), Moreira & Charnoz (2016), Williams & Mukhopadhyay (2019)

地球深部の揮発性元素は円盤ガス/太陽風起源?

e.g., Marty & Meibom (2007)

寺田 (2014) J. Plasma Fusion Res

Credit: Corlado Univ., NASA

大気散逸に対する各元素の生存時間

\mathbf{L}	Γ		`1		Ę	1													
X	Ş	/	Ś		Ļ	1	Ξ	Ξ	Ξ	Ξ	Ē	Ξ	Ē	Ξ	Ē	Ξ	Ē	Ξ	-
-	-	Ì	-	E	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	€	•	_	1	-	_	-	1	-	_	-	1	_
_	_	_	_	Ĺ	_	_	-	_	_	_	_	_	_	_	_	_	_	_	
Ē	i	ł	Ē	Ē	Ē	Ē	Ì	Ē	i	Ē	Ì	Ē	Ì	Ē	Ì	Ē	Ì	Ē	Ē
-	-	-	-	Ē	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	-	Ĵ,	-	5	2	1	-	1	-	1	-	2	-	1	-	1	-	1	_
ŝ	Ē	ŝ	÷	E	÷	ŝ	i	ŝ	Ē	ŝ	i	Ē	i	ŝ	i	Ē	i	ŝ	Ē
-	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
_	_	-	1	Ľ.	_	-	_	-	_	_	_	_	_	_	_	_	_	_	
							_			_	_	_	_	_	_	_	_	_	
i.				Ē	-	i.	-	i.		i.	-	Ē	-	i.	-	Ē	-	i.	
-	-	-	2	5	E	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-				-	-	-	-	-		-	-	-	-	-	-	-	-	-	_
Ē	-	Ē	-	E	-	Ē	-	Ē	-	Ē	-	Ē	-	Ē	-	Ē	-	Ē	Ī
i.	-	i.	-	E	-	i.	-	i.	-	i.	-	ł	-	i.	-	l	-	i.	-
-	=	=	-	Ē	=	-	-	-	=	-	-	-	-	-	-	-	-	-	-
-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	=
Ē	Ē	Ē	Ē	Ē	Ī	Ē	Ī	Ē	Ē	Ē	-	Ē	-	Ē	-	Ē	-	Ē	
÷	-	÷	-	E	-	÷	-	÷	-	÷	-	2	-	÷	-	-	-	÷	-
-	-	-	-	ŀ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			-	Ŀ								_				-			_
÷.	Ĩ	1	Ĩ	Ē	Ē	÷.	Ĩ	÷.	Ĩ	÷.	Ĩ	Ē	Ĩ	÷.	Ĩ	Ē	Ĩ	÷.	Ē
-	_	-	-	1	-	-	-	-	_	-	-	_	-	-	-	_	-	-	_
-	-	-	-	-		-		-	-	-		-		-		-		-	-
	5	÷		Ŀ	E		Ξ		5		Ξ	Ξ	Ξ		Ξ	5	Ξ		
Ē	Ī	Ē	-	E	Ī	Ē	-	Ē	Ī	Ē	-	Ē	-	Ē	-	Ē	-	Ē	Ē
-	-	-	-	2	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-				=		-		-		-		-		-		-		-	-
-		1 1 1	-	Ē	-	-	-	-		-	-	-	-	-	-	-	-	-	
-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ξ	Ξ	÷	Ξ	E	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ
-	-	1	-	E	-	l	-	l	-	l	-	Ē	-	l	-	-	-	l	-
-	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	÷	-	E	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ē	-	-	-	E	-	Ē	-	Ē	-	Ē	-	Ē	-	Ē	-	Ē	-	Ē	-
-	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	-	1	-		-	-		-	-	-		-		-		-		-	-
i.	-	-	-	E	-	i.													
-	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ξ	-	1	-	Ξ	-	Ξ	-	Ξ	-	Ξ	-	Ξ	-	Ξ	-	3	-	Ξ	-
i.	-	-	-	E	-	i.	-	i.	-	i.	-	Ē	-	i.	-	Ē	-	i.	-
-	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-		-	-	1	-	-	-	-		-	-	-	-	-	-	-	-	-	
E	-	-	-		Ē	E	-	E	-	E	-	Ξ	-	E	-	Ē	-	E	Ξ
l	-	-	-	E	-	l	-	l	-	l	-	Ē	-	l	-	Ē	-	l	-
-	-	-	-	F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
				L															-

生存時間 ≡ 存在量/散逸率

現在の散逸率において **ネオン生存時間:**0.6 – 1 × 10⁸ 年 ↔炭素:10¹⁰年

生存時間程度の時間スケールで 供給と散逸の釣り合い

(Jakosky et al. 1994; Kurokawa et al. 2018; Hu & Thomas 2022)

Xe

黒川 (2019) 遊星人. Lammer, Scherf, Kurokawa et al. (2020) をもとに改変

- ネオン散逸率 = $0.7 10 \times 10^{20}$ s⁻¹ に対し、 (Leblanc et al. 2018 GRL のモデルにもとづく)
 - 小惑星・彗星衝突による供給~10¹⁵ s⁻¹
 - 惑星間空間塵(IDPs)による供給 < 5×10¹⁸ s⁻¹ (Frantseva et al. 2018 *Icarus*; Flynn 1997 *JGR*)
 - 宇宙線生成ネオンの供給 ≪ 10¹⁸ s⁻¹ (Farley et al. 2014 *Science*)
 - 残る候補:マントルからの脱ガス
 - 最近(<ネオン生存時間)の火山活動の証拠
 - タルシス: ~ 10^{7-8} 年 (e.g., Hauber et al., 2011)
 - エリシウム: ~ 10^{4-5} 年 (Horvath et al., 2021)

火星マントルのネオン存在度

саре	0	大気散逸率 = マグマ噴出率 × ネオン存在度
		Late Amazonian のマグマ噴出率を上限と(
		(Greeley & Schneid, 1991 Science)
n) — –		\rightarrow マグマのネオン存在度 > 0.3 – 4 × 10 ⁻⁹ g/
ng		
	0	マグマ中存在度 = マントル中存在度/部分溶
		火星隕石のREEから部分溶融度 0.02 – 0.1
		(Norman, 1999; Borg & Draper, 2003)
		\rightarrow マントルのネオン存在度 > 0.5 – 8 × 10 ⁻¹¹
		(地球マントルの > 8 – 50 倍)

ネオンはマグマに溶けにくく、鉱物に取り込まれにくい (溶解度 1.6 ppm/MPa, 鉱物-メルト分配係数 10-4, Iacono-Marziano et al. 2010; Heber et al. 2007)

→ ネオン総量のうち、 < 1/300 しか固化マントルに残らない

→ 形成期に厚い大気を保持していた証拠

惑星形成期におけるネオン総量(分圧)

溶解平衡・粒間メルトへのネオン取り込みモデル)

→ マントルネオン存在度を説明するために必要な

初期火星のネオン分圧 p_{Ne} > 10 Pa

cf.) 現在の火星: $p_{Ne} = 0.6 - 4 \times 10^{-3}$ Pa, 地球: $p_{Ne} = 1.8$ Pa

黒川 (2019) 遊星人

- 太陽組成を仮定 0 (円盤ガス起源, 希ガスリッチ) → 全圧 $p \gtrsim 10^{5-6}$ Pa
- 現在の大気組成を仮定 0 (集積天体起源, 希ガスプア) → 全圧 $p \gtrsim 10^{7-8}$ Pa

火星ネオンの起源:存在度から

初期バルク存在度と各ソースの比較

- 炭素質コンドライトでは不足
- 彗星でも困難 (総質量の10%必要)
- 円盤ガス or 太陽風照射ダスト?
- 未知のコンドライト的天体?

²⁰Ne/²²Ne

火星ネオンの起源:同位体比から

●その場探査による測定はなし

●宇宙線生成ネオン(²¹Ne-rich)が多く, 火星大気成分の²⁰Ne/²²Neが不定性大

 ●提案されている大気²⁰Ne/²²Ne比 • $^{20}Ne/^{22}Ne \simeq 10 \equiv MM1$

• $^{20}Ne/^{22}Ne \simeq 7 \equiv MM2$

(Wiens et al. 1986; Swindle et al. 1986; Park & Nagao 2006; Park et al. 2017)

火星ネオンの起源:同位体比から

 ・脱ガスと散逸の釣り合いから $\left(\frac{{}^{20}\text{Ne}}{{}^{22}\text{Ne}}\right)_{\text{mantle}} = R_{\text{diff},{}^{20}\text{Ne}/{}^{22}\text{Ne}} \cdot ($ $\left(\frac{20 \text{Ne}}{22 \text{Ne}}\right)$ *R*_{diff,²⁰Ne/²²Ne}: 大気散逸の分別係数

- ●ネオン同位体比のその場測定なし
- 火星隕石から提案されている2つの同位体比
 - MM1 → 円盤ガス or 太陽風照射ダスト
 - MM2 \rightarrow コンドライト的

(Wiens et al. 1986; Swindle et al. 1986; Park & Nagao 2006; Park et al. 2017)

Mars Ice Mapper

Credit: NASA

- 2028年打ち上げを目指す
- 将来の有人探査に向けた地下氷探査
- 日本の着陸機(EDL)搭載の可能性
- 日本の火星探査ロードマップ
 - ・水の起源・分布・進化

- ネオン-アルゴン分離装置
 - 原理実証実験済 (Miura et al. 2020, PSS)
 - 過去の探査における障壁であった ⁴⁰Ar(数%)と²⁰Ne(数ppm)の分離に成功
 - 宇宙仕様品の試作中 \bigcirc
- 質量分析計(MS)
 - 月極域探査用のMS (Triton) を使用
 - 軽量化版のデザイン (6 kg → 3.5 kg)

 総重量 5.5-6 kg とし, Mars Ice Mapper 着陸機への 搭載を可能に

MIM/EDLに搭載された場合の Success Criteria

Minimum success

- ネオン存在度(²⁰Ne)を誤差ファクター6で制約 → Vikingの²²Ne計測に基づく間接的な見積もりを確認

Full success

- ネオン存在度(²⁰Ne)誤差ファクター2で制約 → マントルネオン存在度をファクター10で見積もる ○ 大気ネオン同位体比(²⁰Ne/²⁰Ne)を誤差10%で計測 → 太陽組成(円盤ガス or 太陽風インプラント) と コンドライト組成 を区別

Extra success

大気ネオン同位体比を誤差1%で計測

→ 円盤ガス起源 と 太陽風インプラント起源 を区別

円盤ガスの取り込み

- 早期の火星形成
- 効率的な円盤ガス捕獲
- 円盤ガスからの水生成 (> 火星の古海洋質量)

火星の形成・進化への示唆

太陽風照射ダスト集積

コンドライト / 彗星集積

円盤内の物質輸送 ● 火星の材料物質 (ダストサイズ・乱流強度) 揮発性元素に富んだ初期火星 0

→ 火星から諸惑星の形成過程の解明へ

- 地表全圧 $p \simeq 1 \times$
- 円盤ガス散逸直前に集積率小 (τ_{acc}大)?
- ダスト枯渇によってオパシティ (κ) 低?
- 二次大気の混合によって平均分子量 (µ) 大?
- いずれも、 従来の想定より円盤ガス捕獲は効率的であったことを示唆

:円盤ガス捕獲起源のネオン

1次元球対称・静水圧平衡・放射平衡モデル (Sasaki & Nakazawa 1990 Icarus)

$$(10^3 \left(\frac{\mu}{2.35}\right)^4 \left(\frac{\kappa}{0.1 \text{ m}^2/\text{kg}}\right)^{-1} \left(\frac{\tau_{\text{acc}}}{1 \text{ Myr}}\right) \text{ Pa} - (3)$$

→ 典型的なパラメータでは2桁足りない

火星の形成・進化への示唆

- - ネオン量でアンカーされているため、
 - コンドライト起源の場合のほうが初期大気多い 効率的な放射冷却による低い大気散逸率 (Yoshida & Kuramoto 2020 *Icarus*)
 - → 数億年間に渡り原始大気が維持
 - → 温暖な初期火星, 有機化学進化

4

- 火星大気中のネオン →
 - ●揮発性元素に富んだマントル
 - 形成過程への制約 (円盤ガス捕獲, 材料物質)
 - 初期火星の表層環境
- ◎将来火星探査による ネオンその場計測の検討・機器開発

まとめ

