

太陽対流層内部のロスビー波と傾圧不安定波 Rossby waves and baroclinic waves in the Sun's convection zone

戸次宥人(マックス・プランク太陽系研究所)

共同研究者: Robert Cameron, Laurent Gizon, 他

Interior of the Sun and Helioseismology

- The Sun consists of radiation zone (stable / inner 70%) and convection zone (unstable / outer 30%)
- Historically, acoustic (p) modes and gravity (g) modes have been extensively used to probe the interior
- Recently, lots of inertial modes have been newly observed on the Sun, including Rossby waves
- They are expected to be used as an alternative tool to further probe the interior [Gizon et al. 2021, A&A Letters]

2021. 11. 16

Introduction (1/6)

What are Rossby waves?

 Rossby waves are global-scale vorticity waves in a rotating fluid that are rooted in the conservation law of potential vorticity Π

$$\frac{D\Pi}{Dt} = 0, \qquad \Pi = \frac{(\zeta + 2\Omega_0) \cdot \nabla S}{\rho}$$

- Rossby waves can be classified based on the so-called β-effects (restoring "force" of Rossby waves)
- A propagation direction of Rossby waves is determined by the sign of β-effect (regardless of its physical origin)

2021. 11. 16

Classification of Rossby waves in the Sun

(traditional) Rossby wave (r-modes)

$$\begin{cases} \frac{\partial \zeta_r}{\partial t} \approx \beta_r v_\theta \\ \beta_r = \frac{2\Omega_0 \sin \theta}{r} & \text{(planetary)} \\ \beta_r = \frac{2\Omega_0 \sin \theta}{r} & \beta_r \text{-effect} \end{cases}$$

- equatorial mode
- retrograde propagation
- non-convecting

thermal Rossby wave

$$\begin{cases} \frac{\partial \zeta_z}{\partial t} \approx \beta_c v_\lambda \\ \beta_c = -\frac{2\Omega_0 \sin \theta}{H_\rho} & \text{compressional} \\ \beta_{\text{-effect}} \end{cases}$$

- equatorial mode
- prograde propagation
- convectively-driven

topographic Rossby wave

$$\begin{pmatrix} \frac{\partial \zeta_z}{\partial t} \approx \beta_t v_\lambda \\ \beta_t = 2\Omega_0 \left(\frac{d \ln h_z}{d\lambda}\right) & \text{topographic} \\ \beta\text{-effect} \end{pmatrix}$$

- high-latitude mode
- retrograde propagation
- non-convecting

[Rossby 1939,1940, Saio 1982]

[e.g., Busse 1970, Miesch et al., 2008]

2021. 11. 16

GFD Seminar

Introduction (3/6)

I. Traditional Rossby waves (r-modes)

- Near the equator, Rossby waves (r-modes) have been robustly observed at $3 \le m \le 15$
- They contribute a significant fraction of the large-scale velocity power at low latitudes
- The observed ridge can be well approximated by the sectoral mode (l = m) r-modes' dispersion relation
- On the other hand, the observed eigenfunctions show a significant non-sectoral contribution

Radial vorticity power spectrum

Latitudinal eigenfunction of radial vorticity

II. Thermal Rossby waves (columnar convective modes)

- Thermal Rossby waves have been reported many times in numerical simulations as north-south aligned downflow lanes across the equator (also called Banana cells)
- They are regarded as the most efficient form of convection outside the tangential cylinder
- The origin of solar differential rotation is often attributed to thermal Rossby waves
- However, they have NEVER been successfully detected on the Sun

[Miesch et al. 2008]

[Caution] topographic β-effect is considered in the geophysical context

2021. 11. 16

GFD Seminar

Introduction (5/6)

III. Topographic Rossby waves (high-latitude modes)

- Topographic Rossby waves have never been discussed in the solar context in previous literature
- Observations show the m=1 flow feature at high-latitudes that spirals towards the poles
- Some people argue that this high-latitude flow represents the deep-seated giant cell convection
- We will argue that the **high-latitude observations can be explained in terms of topographic Rossby waves** (and baroclinic instability)

[Data provided by Hathaway & Upton., 2013, 2020]

Outline of this talk

• Linear analysis of Rossby waves in the Sun

- Dispersion relation and eigenfunctions of equatorial modes
- Discovery of the "mixed" Rossby modes between r-modes and thermal Rossby modes

• Nonlinear rotating convection simulation

- Eigen-modes extracted from singular-value-decomposition
- Interaction between turbulent convection and Rossby waves

• Baroclinic origin of the high-latitude flows in the Sun

- Topographic Rossby waves become baroclinically unstable
- Physical origin of the high-latitude flow spiral
- Effects of magnetic field and solar dynamo

Outline of this talk

• Linear analysis of Rossby waves in the Sun

- Dispersion relation and eigenfunctions of equatorial modes
- Discovery of the "mixed" Rossby modes between r-modes and thermal Rossby modes
- Nonlinear rotating convection simulation
 - Eigen-modes extracted from singular-value-decomposition
 - Interaction between turbulent convection and Rossby waves

• Baroclinic origin of the high-latitude flows in the Sun

- Topographic Rossby waves become baroclinically unstable
- Physical origin of the high-latitude flow spiral
- Effects of magnetic field and solar dynamo

• The system equations are linearized and transformed to a pseudo-eigenvalue problem

- Spatial derivatives are evaluated with 4th-order central difference method
- Boundary conditions (closed and stress-free) are incorporated in the differential operator
- The eigenvalue equation is solved numerically and focus on the low-frequency modes ($|\Re[\omega]| < 2\Omega_0$)
- The **solar model S** is used for the background stratification
- We begin our analysis for inviscid, uniformly-rotating Sun
- Then, add the turbulent diffusivities, differential rotation, and the background entropy variation

Bekki et al. 2021b (to be submitted)

GFD Seminar

Model : Linear

Linear Results : r-modes with no radial nodes (n=0)

2021. 11. 16

GFD Seminar

Results : Linear (1/8)

Linear Results : r-modes with no radial nodes (n=0)

Results : Linear (1/8)

Linear Results : Thermal Rossby waves (ζ_z symm)

2021. 11. 16

GFD Seminar

Results : Linear (2/8)

Linear Results : Topographic Rossby waves (ζ_z symm)

2021. 11. 16

GFD Seminar

Results : Linear (3/8)

Linear Results : Topographic Rossby waves (ζ_z anti-symm)

Linear Results : "Mixed" Rossby modes

- We find that the r-modes with one radial node (n=1) and the thermal Rossby waves with north-south antisymmetric ζ_z are mixed with one another, forming the "mixed" Rossby modes
- This mode coupling can be understood in analogous to "Yanai" waves (mixed Rossby gravity waves)

2021. 11. 16

Linear Results : "Mixed" Rossby modes

- We find that the r-modes with one radial node (n=1) and the thermal Rossby waves with north-south antisymmetric ζ_z are mixed with one another, forming the "mixed" Rossby modes
- This mode coupling can be understood in analogous to "Yanai" waves (mixed Rossby gravity waves)

2021. 11. 16

GFD Seminar

Results : Linear (5/8)

Linear Results : "Mixed" Rossby modes

- We find that the r-modes with one radial node (n=1) and the thermal Rossby waves with north-south antisymmetric ζ_z are mixed with one another, forming the "mixed" Rossby modes
- This mode coupling can be understood in analogous to "Yanai" waves (mixed Rossby gravity waves)

2021. 11. 16

GFD Seminar

Results : Linear (5/8)

Effect of Turbulent Diffusivities in the Sun on r-modes

- When moderate turbulent diffusion is added, the n=0 r-modes are more and more shifted downwards, leading to a significant deviation from the well-known r^m dependence
- This is likely due to the imbalance of the radial forces and downward diffusive momentum flux
- Consequently, the n=0 modes peak at middle latitudes at the surface in contrast to observations
- On the other hand, the n=1 modes always peak at the surface and at the equator

n = 0 eigenfunctions for different turbulent diffusivities

2021. 11. 16

Results : Linear (6/8)

Effect of Solar Differential Rotation on r-modes

- Inclusion of differential rotation introduces viscous critical layers where the r-modes' phase speed become equal to the local differential rotation speed
- In the vicinity of the critical layers, strong radial flows are driven and substantial horizontal Reynolds stress are generated, leading to an equatorward angular momentum transport

2021. 11. 16

GFD Seminar

Results : Linear (7/8)

Are the observed Equatorial Rossby modes n=0 or n=1?

- In terms of the dispersion relation, the observed frequencies lie between those of n=0 and n=1 modes. So, hard to distinguish
- But in terms of the surface eigenfunctions, the n=1 modes can give better explanations for the observations
 - prominent peak at the equator
 - sign flip at middle latitudes

surface eigenfunction for (left) n=0 and (right) n=1 r-modes

observation

[Proxauf et al. 2020]

2021. 11. 16

GFD Seminar

Results : Linear (8/8)

Are the observed Equatorial Rossby modes n=0 or n=1?

In terms of the dispersion relation, the observed frequencies lie between those of n=0 and n=1 modes. So, hard to distinguish But in terms • We argue that the equatorial Rossby modes give better ex observed on the Sun are likely n=1 modes, sign flip at rather than n=0 modes as normally assumed observation surface This can have substantial implications 8 because the solar Rossby waves can be partially convective in nature Latitude λ [deg]

[Proxauf et al. 2020]

2021. 11. 16

GFD Seminar

Results : Linear (8/8)

Rossby Waves in a Nonlinear Rotating Convection Simulation

How do these modes (such as newly-discovered "mixed" Rossby modes) behave in the nonlinear regime?

- Full-spherical convection simulation with solar-like stratification from $0.71R_{\odot} < r < 0.96R_{\odot}$
- Rotating at the solar rotation rate $\Omega_{\odot}/2\pi = 431$ nHz but the luminosity is decreased by a factor of 20 to achieve a solar-like differential rotation (equator acceleration)

- Total 15 year time series of data with a 5 day cadence is analyzed
- We perform a **singular-value decomposition** on the power spectra to filter out the Rossby modes and to extract the eigenfunctions (both real and imaginary parts)

Bekki et al. 2021a (to be submitted)

2021. 11. 16

GFD Seminar

Model : Nonlinear

Nonlinear Simulation : Thermal Rossby waves

- In our convection simulation, thermal Rossby waves are found to be the most dominant modes in the horizontal velocity power spectrum ($\sim 10^3$ times stronger than the r-modes)
- They transport significant amount of enthalpy and angular momentum

2021.11.16

Results : Nonlinear (1/4)

Nonlinear Simulation : r-modes (n = 0)

- A well-defined power ridge can be seen in the sectoral mode Rossby wave dispersion relation
- At low-*m*, **r**-mode exists globally in radius (**radial node** *n*=**0**)
- At higher-*m*, the mode tends to be strongly confined near the base of the convection zone

2021. 11. 16

Results : Nonlinear (2/4)

Nonlinear Simulation : r-modes (n = 0)

- A well-defined power ridge can be seen in the sectoral mode Rossby wave dispersion relation
- At low-*m*, **r**-mode exists globally in radius (**radial node** *n*=**0**)
- At higher-*m*, the mode tends to be strongly confined near the base of the convection zone

2021. 11. 16

GFD Seminar

Results : Nonlinear (2/4)

"Mixed" Rossby modes found in the simulation

- We find two distinct oppositely-propagating modes either in the *l* = *m* power spectrum of *v*_θ or *l* = *m* + 1 spectrum of ∇ · *v*_H near the surface
- (A) retrograde and (B) prograde mode form a continuous power ridge across m = 0

2021. 11. 16

GFD Seminar

Results : Nonlinear (3/4)

"Mixed" Rossby modes found in the simulation

- (A) The retrograde modes are identified as r-modes with the radial node n = 1
- (B) The prograde modes are identified as north-south anti-symmetric thermal Rossby wave

Mixed Rossby modes between *r*-modes and thermal Rossby waves robustly exist in the rotating convection simulations

2021. 11. 16

Nonlinear Simulation : Topographic Rossby waves

- At high latitudes, topographic Rossby waves are found to exist inside the tangential cylinder
- Predominantly exist at m=1 and propagate in a retrograde direction
- However, the observed spiral pattern is not reproduced

likely due to the lack of strong differential rotation and the baroclinicity (latitudinal entropy variation) in the simulation (to be discussed later)

2021. 11. 16

GFD Seminar

Results : Nonlinear (4/4)

Outline of this talk

• Linear analysis of Rossby waves in the Sun

- Dispersion relation and eigenfunctions of equatorial modes
- Discovery of the "mixed" Rossby modes between r-modes and thermal Rossby modes
- Nonlinear rotating convection simulation
 - Eigen-modes extracted from singular-value-decomposition
 - Interaction between turbulent convection and Rossby waves

• Baroclinic origin of the high-latitude flows in the Sun

- Topographic Rossby waves become baroclinically unstable
- Physical origin of the high-latitude flow spiral
- Effects of magnetic field and solar dynamo

What is baroclinic instability?

- Baroclinic instability is a hydrodynamic instability in a stratified, rotating fluid
- Accompanied by horizontal temperature gradient (instability of the thermal wind)
- Ubiquitous in Earth's atmosphere, and controls the weather at middle-high latitudes [Vallis 2006]
- Leads to a formation of large-scale vortices

©NASA Scienific visualization studio

Introduction II (1/2)

2021. 11. 16

Thermal wind balance in the Sun

- Differential rotation in the Sun is known to be *baroclinic* (does not follow the Taylor-Proudman's constraint)
- Balanced by latitudinal entropy (temperature) gradient

$$\frac{g}{c_p}\frac{\partial s_0}{\partial \theta} = r^2 \sin \theta \frac{\partial \Omega^2}{\partial z}$$

• The required temperature difference between pole-equator

is $\lesssim 10$ K [Rempel 2005, Miesch et al. 2006]

[data from Larson & Schou 2018]

- Historically, it has long been believed that baroclinic instability is strongly suppressed when the stratification is convectively-unstable [Knobloch & Spruit 1982,1984]
- However, recent numerical studies indicate that baroclinic instability can occur even in the presence of convection [Callies & Farrari 2018]

Linear analysis : Baroclinically-unstable modes

- Without latitudinal entropy gradient $\partial s_0 / \partial \theta$, m = 1 topographic Rossby mode is stable and does not show a spiralling pattern
- With Increasing $\partial s_0/\partial \theta$, the mode becomes unstable (growing) even when the background is convectively stable
- The baroclinically-unstable mode show a **spiralling pattern** around the poles similar to the observations
- The dispersion relation agrees well with the observations

2021. 11. 16

GFD Seminar

Results II : Linear

Linear analysis : Baroclinically-unstable modes

- Without latitudinal entropy gradient $\partial s_0 / \partial \theta$, m = 1 topographic ۰ **Rossby mode** is stable and does not show a spiralling pattern
- With Increasing $\partial s_0/\partial \theta$, the mode becomes unstable (growing) even • when the background is convectively stable
- The baroclinically-unstable mode show a **spiralling pattern** around the ٠ poles similar to the observations
- The **dispersion relation** agrees well with the observations ٠

 v_{ϕ}

m = 1

m = 3

m = 4

(-313.1 nHz, 29.2 nHz)

 v_{ϕ}

m = 5

(-381.7 nHz, 33.2 nHz)

2021.11.16

GFD Seminar

Results II : Linear

Nonlinear Model : Full-spherical HD Mean-field Simulations

$$\begin{split} \text{mass:} \quad & \frac{\partial \rho_1}{\partial t} = -\frac{1}{\xi^2} \nabla \cdot (\rho_0 \mathbf{v}), \\ \text{motion:} \quad & \frac{\partial \mathbf{v}}{\partial t} = -\mathbf{v} \cdot \nabla \mathbf{v} - \frac{\nabla p_1}{\rho_0} - \frac{\rho_1}{\rho_0} g \mathbf{e}_r + 2\mathbf{v} \times \Omega_0 \mathbf{e}_z \\ & \quad + \frac{1}{\rho_0} \nabla \cdot \mathcal{R}, \\ \text{entropy:} \quad & \frac{\partial s_1}{\partial t} = \mathbf{v} \cdot \nabla s_1 + c_p \delta \frac{\mathbf{v}_r}{H_p} + \frac{1}{\rho_0 T_0} \nabla \cdot (\rho_0 T_0 \kappa \nabla s_1) \\ & \quad + \frac{1}{\rho_0 T_0} (\mathcal{R} \cdot \nabla) \cdot \mathbf{v}, \end{split}$$

- Small-scale convection is **NOT** solved (mean-field)
- **A-effect** is parameterized [Kitchatinov & Rudiger 1995]

$$\Pi_{ik} = \rho_0 \left[\nu_{\rm vis} \left(S_{ik} - \frac{2}{3} \delta_{ik} \nabla \cdot \boldsymbol{\nu} \right) + \nu_{\rm lam} \Lambda_{ik} \Omega_0 \right]$$

- Weakly subadiabatic layer is included near the base CZ to achieve the thermal wind balance [Rempel 2005]
- We vary the subadiabaticity in the lower CZ (δ_0) that controls the baroclinicity of the system

2021. 11. 16

GFD Seminar

Model II : Nonlinear

Nonlinear Results : Temporal evolution

Time = 16.33 [yr]

2021. 11. 16

GFD Seminar

Results II : Nonlinear

Nonlinear Results : Temporal evolution

2021. 11. 16

GFD Seminar

Results II : Nonlinear

Comparison : Observation vs. Simulation

Data provided by Hathaway & Upton (2020)

2021. 11. 16

Nonlinear Results II : Power spectrum and eigenfunctions

- The power ridge agree well with the dispersion relation of the observed high-latitude inertial modes
- Eigenfunctions are extracted using the singular-value decomposition (SVD)
- The eigenfunctions show a spiraling pattern similar to the observations
- Baroclinic modes transport both angular momentum and heat equatorward

2021.11.16

GFD Seminar

Results II : Nonlinear

Nonlinear Results II : Power spectrum and eigenfunctions

- The power ridge agree well with the dispersion relation of the observed high-latitude inertial modes
- Eigenfunctions are extracted using the singular-value decomposition (SVD)
- The eigenfunctions show a spiraling pattern similar to the observations

2021. 11. 16

GFD Seminar

Results II : Nonlinear

The role of magnetic fields : Motivation & Model

• Observations imply that the amplitude of high-latitude inertial modes change over the solar cycle

- Our mean-field model is extended to MHD regime
- We add a strong toroidal field as an initial condition into the HD simulation Case 3
- Babcock-Leighton source is switched off (decaying)

motion:	$\rho_0 \frac{\partial \boldsymbol{v}}{\partial t} = [\ldots] + \frac{1}{4\pi} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B},$	
entropy:	$\rho_0 T_0 \frac{\partial s_1}{\partial t} = [\ldots] + \frac{\eta}{4\pi} \nabla \times \boldsymbol{B} ^2.$	
induction:	$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{v} \times \boldsymbol{B} + \boldsymbol{\mathcal{E}}_{\mathrm{BL}} - \eta \nabla \times \boldsymbol{B}),$	J
		_

Bekki et al. 2021c (to be submitted)

2021. 11. 16

MHD : Model

MHD Results : Suppression effects by magnetic fields

- We numerically demonstrate that magnetic field has a suppressing effect for baroclinic instability [Gilman 2017]
 - when **B** is added (strong), baroclinic modes are suppressed
 - when B decays away, baroclinic modes become prominent \implies
- $\Delta\Omega$ and Δs_1 are enhanced
- $\Delta\Omega$ and Δs_1 are suppressed

2021. 11. 16

GFD Seminar

MHD : Results (1/2)

70

70

70

70

60

60

60

60

80

80

80

80

MHD Results : Cyclic Dynamo Simulation

- Babcock-Leighton source term is now switched on (dynamo becomes cyclic)
- Amplitude of the high-latitude baroclinic modes oscillates along with the magnetic cycle

Time =3.42 [yr]

MHD : Results (2/2)

2021. 11. 16

MHD Results : Cyclic Dynamo Simulation

- Babcock-Leighton source term is now switched on (dynamo becomes cyclic)
- Amplitude of the high-latitude baroclinic modes oscillates along with the magnetic cycle
- High-latitude baroclinic modes are strong (weak) during the rise (fall) of the magnetic activity cycle
- Accordingly, the horizontal Reynolds stress and latitudinal heat flux are modulated with the activity cycle

High-latitude power spectrum at m = 1

Horizontal Reynolds stress

GFD Seminar

2021. 11. 16

Summary

• Recent interesting observations of inertial modes in the Sun [Gizon et al., 2021]

- Robust observations of the equatorial Rossby waves (r-modes) and high-latitude flow spirals
- Thermal Rossby waves (that are repeatedly predicted in simulations) are NOT observed on the Sun
- Mode coupling between r-modes and thermal Rossby waves
 - Found both in the linear analysis and nonlinear convection simulations
 - Owing to this mode mixing, r-modes can partially transport the energy and angular momentum

• Baroclinic instability in the Sun

- Quite ubiquitous in the Earth's atmosphere. Likely occur in the Sun's convection zone as well
- The observed high-latitude flow properties can be well explained by baroclinic Rossby waves
- Close interaction with the solar dynamo-generated magnetic fields

- Bekki et al., "Solar equatorial Rossby modes in a rotating convection simulation" (to be submitted to A&A)
- Bekki et al., "Linear model of global-scale inertial modes in the Sun's convection zone" (to be submitted to A&A)
- Bekki and Cameron., "3D MHD mean-field simulation of solar Babcock-Leighton dynamo" (to be submitted to A&A Letters)

- Bekki et al., "Baroclinic origin of the Sun's m=1 high-latitude inertial mode" (to be submitted to A&A)
- Bekki et al., "Solar cycle dependence of baroclinically-driven high-latitude inertial modes" (in prep)

2021. 11. 16

GFD Seminar

Summary

Supplementary

• Ignoring dissipation, Lorentz force, and radiative heating, the potential vorticity Π is materially conserved

$$\frac{D\Pi}{Dt} = 0, \text{ with } \Pi = \frac{(\zeta + 2\Omega_0) \cdot \nabla S}{\rho}, \text{ where } \zeta = \nabla \times \nu \text{ is a fluid vorticity}$$

• If the spherical surface is isentropic to a good approximation,

$$\frac{D}{Dt}(\zeta_r + 2\Omega_0 \sin \theta) = 0,$$

In the Eulerian form, $\frac{\partial \zeta_r}{\partial t} = \beta_r v_{\theta} + [...v_r \text{ terms...}],$ where $\beta_r = \frac{2\Omega_0 \sin \theta}{r}$, is the planetary β -effect

If the xy-plane can be approximated to be isentropic,

$$\frac{D}{Dt} \left(\frac{\zeta_z + 2\Omega_0}{\rho} \right) = 0.$$

In the Eulerian form, $\frac{\partial \zeta_z}{\partial t} = (\beta_c + \beta_t)v_\lambda + [...],$
where $\beta_c = 2\Omega_0 \frac{d \ln \rho}{d\lambda} = -\frac{2\Omega_0}{H_\rho}$, is the compressional β -effect
and $\beta_t = 2\Omega_0 \frac{d \ln h_z}{d\lambda}$, is the topographic β -effect

$$h_z = \begin{cases} \sqrt{r_{\max}^2 - \lambda^2} - \sqrt{r_{\min}^2 - \lambda^2}, & (0 < \lambda < r_{\min}) \\ 2\sqrt{r_{\max}^2 - \lambda^2}, & (r_{\min} < \lambda < r_{\max}) \end{cases}$$

Here, we used the integrated equation of

continuity $\nabla \cdot (h_z \rho v) = 0.$

2021. 11. 16

٠

GFD Seminar

Supplementary

Compressional 6-effect vs. Topographic 6-effect

For the solar internal model S (Jorgen Christensen-Dalsgaard 1996)

	$\Re[\omega]/\Omega_0$							
	r-mode $(n = 0)$	r-mode $(n = 1)$	thermal (S)	thermal (AS)	topographic (S)	topographic (AS)		
0	-	-0.629	-	0.629	-	-		
1	-0.999	-0.527	0.151	0.694	-0.303	-0.173		
2	-0.666	-0.447	0.290	0.758	-0.293	-0.172		
3	-0.499	-0.380	0.410	0.824	-0.258	-0.166		
4	-0.399	-0.328	0.518	0.883	-0.216	-0.157		
5	-0.333	-0.286	0.612	0.938	-0.181	-0.149		
6	-0.285	-0.253	0.682	0.990	-0.161	-0.141		
7	-0.249	-0.226	0.743	1.029	-0.144	-0.133		
8	-0.222	-0.204	0.792	1.053	-0.131	-0.126		
9	-0.199	-0.185	0.822	1.061	-0.121	-0.120		
10	-0.181	-0.170	0.846	1.056	-0.111	-0.114		
11	-0.166	-0.156	0.863	1.049	-0.103	-0.109		
12	-0.153	-0.145	0.873	1.041	-0.096	-0.104		
13	-0.142	-0.135	0.881	1.033	-0.092	-0.099		
14	-0.133	-0.126	0.887	1.024	-0.089	-0.095		
15	-0.124	-0.119	0.889	1.015	-0.085	-0.091		
16	-0.117	-0.112	0.889	1.006	-0.083	-0.087		

Table 2. Summary of dispersion relations of various Rossby waves obtained for the uniform rotation ($\Omega_1 = 0$) and inviscid case ($\nu = \kappa = 0$).

Notes. *n* denotes the number of radial node at the equator. "S" and "AS" represent north-south symmetric/anti-symmetric across the equator for *z*-vortices. R-mde (n = 1) and thermal Rossby wave (AS) are negative and positive frequency branch of the surface mixed mode, and thus they degenerate to non-propagating axisymmetric mode at m = 0.

Angular momentum transport by r-modes

$$\nabla \cdot (\boldsymbol{F}_{\rm RS} + \boldsymbol{F}_{\rm MC} + \boldsymbol{F}_{\rm VD}) = 0, \qquad \begin{cases} \boldsymbol{F}_{\rm RS} = \rho_0 r \sin \theta \langle \boldsymbol{v}_m \boldsymbol{v}_\phi \rangle, \\ \boldsymbol{F}_{\rm MC} = \rho_0 r^2 \sin^2 \theta \boldsymbol{v}_m \Omega, \\ \boldsymbol{F}_{\rm VD} = -\rho_0 v r^2 \sin^2 \theta \nabla \Omega, \end{cases}$$

 $\overline{}$

Effects of Turbulent Diffusivities on r-modes

Typical oscillation period of Rossby waves at azimuthal order m is given by

$$\tau_{\rm Ro} = \left| \frac{2\pi}{\omega_{\rm Ro}} \right|, \quad \text{where} \quad \omega_{\rm Ro} = -\frac{2\Omega_0}{m+1}.$$

Typical diffusive time scale is $\tau_{\rm diff} = \frac{l_m^2}{\nu}, \quad \text{with} \quad l_m = \frac{R_\odot}{m},$
For a given diffusivity, the critical azimuthal order can be defined $m_{\rm crit} = \left(\frac{R_\odot\Omega_0}{\pi\nu}\right)^{1/3}$

For

Thermal Rossby waves become convectively-unstable

- Thermal Rossby waves become unstable when the background stratification is changed towards superadiabatic ($\delta > 0$)
- Propagation frequencies decrease (increase) when $\delta > 0$ ($\delta < 0$)

2021. 11. 16

Transport properties by thermal Rossby waves

- Propagation frequencies decrease (increase) when $\delta > 0$ ($\delta < 0$)
 - depends on the way it couples with g-modes
 (additional restoring force)

• When the background is superadiabatic ($\delta > 0$), thermal Rossby waves transport heat and angular momentum upwards, and equatorwards

Power spectra comparison : Observation vs. Simulation

2021. 11. 16

Singular Value Decomposition

Let $q(r, \theta, \phi; t)$ be a variable that characterizes the mode of interest.

FFT in time and longitude, we have $\tilde{q}(r, \theta; m; \omega)$

At fixed m, we compute the equatorial spectrum $\tilde{q}_{eq}(r; \omega)$

Depending on the mode of interest, we may limit (r, θ) domain to be focused $\tilde{q}_{eq}(r \in [r_1, r_2], \omega \in [\omega_1, \omega_2])$ so that the prominent power peak exists inside the domain.

Applying SVD, the spectrum is decomposed as

$$\tilde{q}_{\rm eq}(r',\omega') = \sum_k \sigma_k U_k(r') V_k^*(\omega'),$$

Only keeping the 1st singular value σ_0 gives a desired decomposition of $\tilde{q}_{eq}(r', \omega')$ into one radii U_0 and one frequency function V_0

Eigenfunctions of an arbitrary variable ψ are calculated as,

$$\psi_{\text{eigen}}(r,\theta) = \sum_{\omega'=\omega_1}^{\omega_2} \psi(r,\theta;\omega') V_0(\omega').$$

Numerical methods : Babcock-Leighton dynamo code I

$$\begin{split} & \text{mass:} \quad \frac{\partial \rho_1}{\partial t} = -\frac{1}{\xi^2} \nabla \cdot (\rho_0 \boldsymbol{v}), \\ & \text{motion:} \quad \frac{\partial \boldsymbol{v}}{\partial t} = -\boldsymbol{v} \cdot \nabla \boldsymbol{v} - \frac{\nabla p_1}{\rho_0} - \frac{\rho_1}{\rho_0} g \boldsymbol{e}_r + 2 \boldsymbol{v} \times \boldsymbol{\Omega}_0 + \frac{1}{4\pi\rho_0} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B} + \frac{1}{\rho_0} \nabla \cdot \boldsymbol{\Pi}, \\ & \text{induction:} \quad \frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{v} \times \boldsymbol{B} + \boldsymbol{\mathcal{E}} - \eta \nabla \times \boldsymbol{B}), \\ & \text{entropy:} \quad \frac{\partial s_1}{\partial t} = \boldsymbol{v} \cdot \nabla \boldsymbol{s}_1 + c_p \delta \frac{v_r}{H_p} + \frac{1}{\rho_0 T_0} \nabla \cdot (\rho_0 T_0 \kappa \nabla s_1) + \frac{1}{\rho_0 T_0} \left[(\boldsymbol{\Pi} \cdot \nabla) \cdot \boldsymbol{v} + \frac{\eta}{4\pi} |\nabla \times \boldsymbol{B}|^2 \right], \end{split}$$

- "Mean-field" MHD equations in a 3D full-spherical shell (NOT azimuthal mean)
- Small-scale convective angular momentum transport
 (Λ-effect) is parameterized [Kitchatinov & Rudiger 1995]

$$\Pi_{ik} = \rho_0 \left[\nu_{\rm vis} \left(S_{ik} - \frac{2}{3} \delta_{ik} \nabla \cdot \boldsymbol{\nu} \right) + \nu_{\rm lam} \Lambda_{ik} \Omega_0 \right]$$

- Convective energy transport is implicitly assumed
- Lower CZ is set weakly subadiabatic to achieve the thermal wind balance [Rempel 2005]

2021. 11. 16

Supplementary

Numerical methods : Babcock-Leighton dynamo code II

$$\text{induction:} \quad \frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{v} \times \boldsymbol{B} + \boldsymbol{\mathcal{E}} - \eta \nabla \times \boldsymbol{B}),$$

Bipolar magnetic regions (BMRs) are produced instantaneously at the surface in response to the dynamo-generated toroidal field near the base of CZ

[step I] determine the location of BMR emergence (θ^*, ϕ^*) that satisfies the following condition

 $\begin{aligned} f_{eq}(\theta^*) B_{\phi}(\theta^*, \phi^*)|_{r=r_{bcz}} > B_{crit} = 500 \text{ G} \\ \text{suppress high-} & \text{toroidal field} & \text{threshold field strength} \\ \text{latitude emergence} & \text{near the base} & \text{for emergence} \end{aligned}$

[step 2] electro-motiver force \mathcal{E} is set proportional to $B_{\phi}(\theta^*, \phi^*)$

$$\begin{pmatrix} \mathcal{E}_{\theta} \\ \mathcal{E}_{\phi} \end{pmatrix} = \alpha_0 f_{sf}(r, \theta, \phi) \begin{pmatrix} -\cos\psi^* \\ \sin\psi^* \end{pmatrix} B_{\phi}(\theta^*, \phi^*)|_{r=r_{bcz}}$$

localized near the surface

Joy's law tilt: $\psi^* = 35^{\circ} \cos \theta^*$

[step 3] frequency of BMR emergence is determined by the log-normal time-delay distribution with $\Delta_s = t - t_s \gtrsim 10$ days

R-modes in the mean-field simulations

- Observations suggest that Rossby waves (r-modes) are importanat ingredients for large-scale dynamics [Loeptien et al. 2018]
- r-modes exist at roughly $3 \le m \le 15$ (possibly excited by non-axisymmetric Lorentz force)
- Extracted eigenfunction of v_{θ} peaks at the equator, changes its sign, and decays at higher latitudes [Proxauf et al. 2020]
- r-mode's eigenfunctions are strongly trapped in the equatorial region by the viscous critical layers [Gizon et al. 2020]

2021. 11. 16

Supplementary

Physical Picture of Baroclinic instability

Numerical Simulation of Baroclinic instability

GFD Seminar

Supplementary