The IPSL Venus GCM : Status in the context of the development of a Venus Climate Database

S. Lebonnois,

F. Forget, A. Spiga, A. Martinez, E. Millour, T. Pierron (LMD/IPSL, Paris, France) F. Lefèvre, A. Määttänen (LATMOS/IPSL, Paris, France)

I. Garate-Lopez (UPV/EHU, Bilbao, Spain) G. Gilli, D. Quirino, V. Silva (IA/FCUL, Lisbon, Portugal) T. Navarro (McGill, Montreal, Canada)

The IPSL Venus GCM

- Three-dimensional: 96x96x
 - [50 (0~95 km) / 78 (0~150 km) / 90 (0~250 km)]
- Vertical coordinates: hybrid (sigma/pressure)
- Dynamical core, transport of tracers
- Specific physics:
 - Radiative transfer: Infrared Net Exchange Rates matrix Solar heating rates: tables
 - Thermosphere: Non-LTE processes EUV heating molecular diffusion
 - Parameterizations of sub-grid processes: boundary layer (Mellor&Yamada 1982), convection non-orographic gravity waves orographic gravity waves
 - Topography

Photochemistry implemented (PhD of Aurélien Stolzenbach)

Gilli et al (2017, 2021) ; Garate & Lebonnois (2018) ; Navarro et al (2018, 2021)

Below the clouds

Below the clouds of Venus

Radiative transfer in deep atmosphere

Strong impact on dynamics

Wave activity

Impact on angular momentum transport and zonal wind profile

Near-surface behavior

Planetary boundary layer (PBL) structure, slope winds and mountain waves

Radiative transfer sensitivity

Tuning solar heating in the deep atmosphere...

Radiative transfer sensitivity

New solar tuning => fit of the temperature to Vega 2 profile

(stable over 100 Vd)

Superrotation

Wave activity below clouds

PBL structure

Role of slope winds

Mountain waves

Physical parameterization tested in the GCM

(~cloud-top)

The upper atmosphere

The upper atmosphere

Recent tuning of the 80-120 km region

78-lev simulations (up to ~150 km) Gilli et al 2021 : comparison to T and composition observations Navarro et al 2021 : structure and variability of circulation

Extension to 10⁻⁸ Pa (~250 km)

Comparison to datasets Tuning of EUV heating parameters Problem of composition...

Lower thermosphere Atomic oxygen peak

Gilli et al., 2021

Observed variability above clouds

Distribution of O₂ nightglow brightness observed by VIRTIS/VEx

- Bright emission patches also located far form the AS-point
- Spatial and temporal variation of airglow structure

Current GCMs can not explain this large variation

O₂ nightglow variability

Kelvin-like wave propagation

Equatorial zonal wind perturbation for T=5.7 Earth days

Kelvin-like wave, originated in the cloud region

Strongly affects the thermospheric nightside

Navarro et al., 2021

Dynamics in the night side

Temperature and vertical wind at 120 km

Night

Day

Navarro et al., 2021

Upper thermosphere above 150 km

Above 150 km

Based on datasets from

- Pioneer Venus (OAD, ONMS),
- Magellan (aerobraking, POD)
- Venus-Express (VeXADE),

we can investigate temperature, density and composition above 150 km.

Tuning includes :

- EUV efficiency and CO₂-O quenching coefficient
- CO₂ photodissociation ?

Parameter to be taken into account : E10.7

Temperature tuning above 150 km

Temperature tuning through EUV efficiency and CO₂-O quenching coefficient

Temperature vs observations above 150 km

Temperature tuning through EUV efficiency and CO₂-O quenching coefficient

Atmospheric temperature variations with altitude

Composition : O and CO

O plays a significant role on temperature !

Problem with the composition : not enough O and CO above 150 km...

Composition : O and CO

Increasing CO₂ photodissociation improves O and CO... Investigations ongoing

Total density

Increasing CO_2 photodissociation improves also total density, especially on dayside. On nightside, the warm bias in the 90-120 km altitudes makes altitude wrong...

Sensitivity to E10.7

Exospheric temperature as a function of E10.7

Retrieved from O profiles in PV-ONMS datasets

We will investigate the sensitivity of our simulations to E10.7

The Venus Climate Database

VCD

The IPSL Venus GCM is a mature tool to study the upper atmosphere of Venus and its variability => interest for the EnVision project and aerobraking

ESA is funding our Venus Climate Database

- Engineer and scientific purposes
- Reference simulations for different scenarios (E10.7 / cloud UV albedo)
- Plug-in tools, but also web interface

Vertical extension of GCM simulations up to 250 km + analytical exosphere

Sensitivity of temperature and circulation to model parameters and to horizontal resolution still to be fully assessed.

Public release : September 2021