熱潮汐波に着目した あかつき UVI 観測から得られる 水平風速のデータ同化と 金星客観解析データ作成の試み

藤澤 由貴子・杉本 憲彦・基盤S金星再解析チーム 金星大気の観測・シミュレーション・データ同化に関する研 究会 2021/03/15 オンライン

はじめに

- •目的:あかつきデータから金星の再解析プロダクトを作成・ 公開
- 地球:
 - •JRA (気象庁)
 - ERA (ECMWF)
 - NCEP/NCAR 再解析
- 火晕:

 - EMARS (The Ensemble Mars Atmosphere Reanalysis System)
 - MACDA (The Mars Analysis Correction Data Assimilation Dataset)
- 金星:

MGS/TES Mars Analysis Correction Data Assimilation v1.0 The MACDA Plotter
DATASET VARIABLES
Plot: Atmospheric Temperature V
TEMPORAL DIMENSIONS
● MARS date Martian year (MY): 24 ↓ Solar Longitude: [141.5] degrees Mars Universal Time: 2 ↓ hours ● CEARTH date YYYY/(M)M/(D)D @ (h)h UTC 1999 / 5 / 20 @ 8
SPATIAL DIMENSIONS
Longitude (min.max): -180. 180. degrees Latitude (min.max): -90. 90. degrees Level: 1 (-5 m) ∨ above ground
FIGURE PARAMETERS Type of plot: Filled contours ▼ Variable Min value: Default K K Colormap: Jet Topography contours: Black ▼
SUBMIT RESET
MGS/TES MACDA v1.0 (c) University of Oxford - The Open University. Python-based interface by Luca Montabone, James Holmes, Aymeric Spiga, Russell Jones.
UNVERSIVY OF OXFORD

火星の再解析プロダクトの公開例 $(\Lambda \Lambda \Lambda \cap \Lambda)$

Ø はじめに 再解析プロダクトの作成に必要なもの

•モデル:観測とある程度近い挙動を持つモデル

 \rightarrow AFES-Venus (Sugimoto et al. 2017)(Atmospheric GCM For the Earth Simulator)

• データ同化システム:

 \rightarrow ALEDAS-V (Sugimoto et al. 2017) (AFES LETKF Data Assimilation System

for Venus)

科研費・基盤S「あかつきデータ同化が明らかにする金星大気循環の全貌」

\iint はじめに 熱潮汐波の位相改善(Sugimoto et al. 2019)

- •同化に用いた観測データ
 - Venus Express 紫外イメージャから得られる水平風速

同化に用いた観測データ(東西風・南北風)

\int はじめに 熱潮汐波の位相改善(Sugimoto et al. 2019)

・ 温度の緯度高度断面(赤道上)

• 東西風速を同化することで、温度の位相が改善

あかつきの電波掩蔽観測 (Ando et al. 2018)

AFES-VenusALEDAS-V太陽直下点を参照点に30地球日のコンポジット平均

はじめに 熱潮汐波の位相改善(Sugimoto et al. 2019)

・温度の緯度経度断面(高度70km)

• 東西風速を同化することで、温度の位相が改善

太陽直下点を参照点に30地球日のコンポジット平均

あかつき観測により得られる水平風速を同化

・以下の変化を確認

- •風速場(スーパーローテーション)
- •熱潮汐波の位相

モデル・実験設定・観測デー

Ø モデルと実験設定 AFES-Venus (Venusian atmospheric GCM)

- 3次元球面プリミティブ方程式(静水圧平衡)乾燥大気
- 解像度: T42L60 (128×64×60)
- 初期値:スーパーローテーションを仮定した東西風(4地球年スピンアップ)
- •比熱: Cp一定 (1000 J/kg/k)
- 水平超粘性: 0.1地球日の e-folding time
- 鉛直超粘性: 0.15 m²s⁻¹
- 地形や惑星境界層はなし
- •太陽加熱:
 - 日変化成分を含む
 - Tomasko (1980) と Crisp (1989) に基づく
- 赤外放射過程:ニュートン冷却で簡略化 dT/dt = -κ(T-Tref(z))(Crisp, 1986)

🌒 モデルと実験設定 ALEDAS-V (Data Assimilation System)

- アンサンブルメンバー: 31
- データ同化サイクル:6時間
- 観測ウィンドウ: 1時間
- インフレーション: 10 %
- 局所化パラメータ (水平): 400 km
- •局所化パラメータ(鉛直): logP=0.4 (P: 圧力)~4km
- ランダム誤差 (風速): 4.0 m/s
- 9時間予報をして(t=0)、 t=3からt=9を同化に用いる。
- t=3からt=9の観測を入力して同化、t=6を再解析値とする。(=4D LETKF)
 ◆ Sugimoto+2017

• 使用データ: <u>あかつき紫外イメージャ(365nm)の雲追跡(水平風速)</u>

- Release : 20190903/CMV_UVI_201512-201812/
- Filename : concat_365_eps10_pphvlen2.nc
- Resolution : 120x60
- Produced by : Takeshi Horinouchi
- References : Ikegawa and Horinouchi (2016), Horinouchi et al. (2017), Horinouchi et al. (2018)
- <u>高度70kmに同化。</u>加工は特にしていない。
- 同化期間
 - epoch1: 201612 201701
 - epoch2: 201707 201709
 - epoch3: 201802 201804
 - <u>epoch4: 201809 201812(今日の発表)</u>

観測データ(201809-201812) スナップショット

• 2018-09-06 11:00

観測データ(201809-201812) スナップショット

• 2018-11-01 08:00

観測データ(201809-201812) スナップショット

• 2018-12-07 11:00

データ同化には、6時間に1回(1日あたり4回)以上のデータ数があることが望ましい観測データが特に多い期間

実験結果 RMSD(高度70km)

$$RMSD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_i - x_i)}$$

 X_i : frf (without assimilation) x_i : 365eps10

東西風

温度

2

》 実験結果 東西風緯度高度断面(時間東西平均)

frf(without assimilation)

観測(2018.11)

frf(without assimilation)

Horinouchi et al. (2018)

観測 365nm (2018.11) 同化結果

frf(without assimilation)

-25 -20 -15 -10 -5 0 5 10 15 20 25

GrADS/COLA

30 40

10 20

-40 -30 -20 -10 0

GrADS/COLA

-8-7-6-5-4-3-2-10 1 2 3 4 5 6 7 8

Kouyama et al. (2019)

Taguchi et al. (2007)

Fig. 6. Weighting functions of LIR for nominal and no cloud cases.

Ando et al. 2018

同化結果(2018.11)

- あかつき観測により得られる水平風速を同化
 - ・風速場(スーパーローテーション)の改善
 - •熱潮汐波の位相の改善
 - •コールドカラーの再現

• <u>今回の同化結果をファーストアナリシスとしてweb公開</u>

- データ形式:NetCDF
- 同化期間:
 - epoch1: 201612 201701
 - epoch2: 201707 201709
 - epoch3: 201802 201804
 - epoch4: 201809 201812
- •<u>Ver2の作成</u>
 - データ同化上の改善点の取り込み
 - •UVI(283nm) ·LIRの同化
 - •同化期間を検討(短周期擾乱の解析に適した期間等)

LIR加重関数

Taguchi etal. (2007) Fig.6

Fig. 6. Weighting functions of LIR for nominal and no cloud cases.

》実験結果 温度赤道上経度時間断面(高度加重平均)

frf(without assimilation)

実験結果 温度 赤道上経度時間断面(高度加重平均)

同化結果

-8-7-6-5-4-3-2-10 1 2 3 4 5 6 7 8

同化結果

緯度経度断面(z35,加重関数なし)

Т

365eps10-xy t z35 t201811 compst

365eps10-xy v z35 t201811 compst

365eps10-xy u z35 t201811 compst

U

365eps10

緯度経度断面 (加重関数)

Τ

U

365eps10-xy u zlir t201811 compst

V

frf

365eps10

波数分解(高度70km)

∭コンポジット図(高度70km)温度

365eps10 201811

//コンポジット図(高度70km)東西風

frf

365eps1(201811

|||コンポジット図(高度70km)南北風

frf

365eps1(201811

波数分解(赤道上高度経度図)

波数分解(高度加重平均)

緯度経度断面 (加重関数)温度

緯度経度断面 (加重関数)東西風

緯度経度断面 (加重関数)南北風

RMSD

の実験結果 RMSD 高度時間断面

運動量フラックス・熱フラックス

total

熱潮汐波

短周期擾乱

365eps10_UVrho_total_20181011

Horinouch et al. 2020

「実験結果 運動量輸送 <u'v'>cos θ 観測との比較

Horinouch et al. 2020

実験結果 運動量輸送 ρ <u'w'>cos θ (2018.10-11)

total

 ρ u'w' (total) * cos θ

EQ Latitude (degree)

frf UWrho total 20181011

305

-0.005

30N

60N

0.005

75 -

70

(km) 60 -

VIII

50 -

45 -

熱潮汐波

ρ u'w' (tide) * cos θ ρ u'w' (total-tide) * cos θ 75 -75. 70 70 (km) (km) (ku) (ku) -9 60 -응 60 TIP 55 ₹ 55 50 -50 45 305 EQ Latitude (degree) 30N 305 EQ Latitude (degree) 30N 6**0**S 60N 6**0**S 60N 0.0005 -0.005 0.005 -0.0005 frf UWrho tide 20181011 frf UWrho another 20181011 $\rho u'w'$ (tide) * $\cos\theta$ $\rho u'w'$ (total-tide) * $\cos\theta$

365eps10_UWrho_tide_20181011

短周期擾乱

実験結果 熱輸送 ρ < T'v'>cos θ (2018.10-11)

total

熱潮汐波

365eps10 TVrho total 20181011

365eps10 TVrho another 20181011

短周期擾乱