金星熱圏GCM(Hoshino et al., 2012, 2013)の確認と活用

Hiroki Karyu^a, Takeshi Kuroda^a, Hideo Sagawa^b, Hitoshi Fujiwara^c, Masahiro Takagi^b, Yasumasa Kasaba^a

^a Tohoku University, ^b Kyoto Sangyo University, ^c Seikei University

Upper atmospheric dynamics of Venus

□ Hoshino et al. (2012)

□ Hoshino et al. (2013)

□ Test runs and applications

Upper atmospheric dynamics of Venus

Different dynamical regimes

- 1. Retrograde superrotationg zonal wind (RSZ wind)
- 2. Subsolar-to-antisolar wind (SS-AS wind)
- ightarrow ~ 70 km \rightarrow RSZ wind
- > 70 ~ 120 km \rightarrow transition region
- 120 km ~ SS-AS circulation

Transition region shows large variability

Observational studies : Nightglow

Maps of the statistical distribution of the O₂ and NO night glow [Soret et al., 2012, Stiepen et al., 2013]

Patchy structure indicates high variability of O_2 and NO night glow intensity peak \rightarrow variation in the background wind?

2021/03/11

Observational studies : Wave activity

Periodic variations of oxygen EUV dayglow in the thermosphere [Masunaga et al., 2015]

• 1.8, 2.8, 3.1, 4.5, and 9.9 day period

Density oscillation in the nightside of the thermosphere [Forbes and Konopliv, 2007]

Summary of wind measurements

Species/Emissions/Temperatures	Altitude (km)	SS-AS Winds (m/sec)	RSZ Winds (m/sec)	
Visible Spectroscopy (Solar Radiation) ^a	~ 70		83 ± 27	
Temperatures (IR and Occultation) ^b	70–90		Variable (weak)	
CO mm, CO distribution ^c	$\sim \! 80 - \! 100$	Present	Variable	
CO mm, winds ^d	$\sim \! 90 - \! 105$	$\leq 40 - 322 \pm 25$	$35-147 \pm 3$ (variable)	
10-micron, CO ₂ heterodyne ^e	109 ± 10	$\leq 35 - 129 \pm 1$	$3 \pm 7 - 40 \pm 3$ (weak)	
O ₂ IR (1.27 microns) ^f	90–110		Variable (~10–50)	
O ₂ Visible (400–800 nm) ^g	100–130		Weak (\leq 30)	
CO 4.7-micron, windsh	125–145	$Sum = 200 \pm 50$		
NO nightglow (UV) ⁱ	115–150	~ 200	40-60	~70 km : RSZ
O dayglow (130 nm) ^j	130–250		Eddy diffusion constraint	
Temperatures (night) ^k	Above 150	~ 200	$\sim 50 - 100$	70 ~ 120 km : Variable
H dayglow (121.6 nm) ^l	Above 150		~45-90	
H and He densities ^m	Above 150		~45–90	120 ~ : SS-AS (& RSZ)

Schubert et al., 2007

Outstanding problems

□ Wind variations between 90 and 130 km regions

□ Variable structures of NO and O_2 nightglow emissions → Non-steady transport of these species? → Influence of gravity waves?

□ The role of wave activity

Hoshino et al. (2012) \rightarrow Rossby wave, Kelvin wave, Thermal tides Hoshino et al. (2013) \rightarrow Gravity wave

Hoshino et al. (2012)

Model description

Basic settings

- 5° in longitude x 10° in latitude,
- 38 vertical layers (80~180 km)
- Chemical reactions (CO, CO₂, O, O₂)

Chemical reactions

Reaction	Reaction coefficient	Reference	
$CO_2 + hv \rightarrow CO + O$ $O + O + CO_2 \rightarrow O_2 + CO_2$	$J k_{11} = 5.2 \times 10^{-47} exp(900/T) \text{ m}^{6} \text{ s}^{-1}$	Hampson (1980)	
$\mathrm{CO} + \mathrm{O} + \mathrm{CO}_2 \rightarrow \mathrm{CO}_2 + \mathrm{CO}_2$	$k_{12} = 6.2 \times 10^{-48} \mathrm{m^6 s^{-1}}$	Slanger et al. (1972)	

- 1-D nightglow model
 - \rightarrow calculated with 3-D composition distribution obtained by the GCM
 - \rightarrow comparison with previous observations

Recombination of atomic oxygen

•	
$ClO + O \rightarrow O_2^* + Cl$	(26)
$HO_2 + O \rightarrow O_2^* + OH$	(27)
$ClO_2 + Cl \rightarrow O_2^* + Cl_2.$	(28)
$HO_2 + O \rightarrow O_2^* + OH$ $ClO_2 + Cl \rightarrow O_2^* + Cl_2.$	() ()

Model description : Basic equations

□ Momentum equations

$$\frac{\partial u}{\partial t} = -\mathbf{v} \cdot \nabla u + \left(2\Omega + \frac{u}{r\cos\theta}\right) v\sin\theta - \frac{1}{r\cos\theta} \frac{\partial\Phi}{\partial\phi} + g\frac{\partial}{\partial p} \left(\mu\frac{p}{H}\frac{\partial u}{\partial p}\right) - \lambda_{RF}u,$$
(2)

$$\frac{\partial v}{\partial t} = -\mathbf{v} \cdot \nabla v - \left(2\Omega + \frac{u}{r\cos\theta}\right) u\sin\theta - \frac{1}{r}\frac{\partial \Phi}{\partial\theta} + g\frac{\partial}{\partial p}\left(\mu\frac{p}{H}\frac{\partial v}{\partial p}\right) - \lambda_{RF}v,$$
(3)

 μ : Viscous coefficient λ_{RF} : Rayleigh friction coefficient

□ Continuity equation

$$\frac{\partial \omega}{\partial p} = -\frac{1}{r \cos \theta} \frac{\partial (\nu \cos \theta)}{\partial \theta} - \frac{1}{r \cos \theta} \frac{\partial u}{\partial \phi},$$

(9)

- Eddy viscosity
- $\mu_e = \rho K \tag{4}$

$$K = \begin{cases} K_0 \left(\frac{p}{p_{turbo}}\right)^{-0.5} & (p \ge p_{turbo}) \\ K_0 & (p < p_{turbo}) \end{cases}, \tag{5}$$

• Molecular viscosity

$$\begin{split} \mu_{m} &= \sum_{i=1}^{3} \frac{\mu_{i}}{\left(\frac{1}{N_{i}}\right) \sum_{j=1}^{3} N_{j} \phi_{ij}}, \end{split} \tag{6} \\ \phi_{ij} &= \frac{\left\{1 + \left(\frac{\mu_{i}}{\mu_{j}}\right)^{1/2} \left(\frac{M_{j}}{M_{i}}\right)^{1/4}\right\}^{2}}{2\sqrt{2} \left(1 + \frac{M_{i}}{M_{j}}\right)^{1/2}}, \end{split}$$

Rayleigh friction

$$\lambda_{RF} = \begin{cases} \lambda_0 \frac{2}{1 + (p/p_{turbo})^{0.5}} & (p \ge p_{turbo}) \\ \lambda_0 & (p < p_{turbo}) \end{cases}, \tag{8}$$

Model description : Energy conservation

Energy conservation

$$\frac{\partial \epsilon}{\partial t} = -\mathbf{v} \cdot \nabla(\epsilon + gz) + g \frac{\partial}{\partial p} \left(K_m \frac{p}{H} \frac{\partial T}{\partial p} \right) + g \frac{\partial}{\partial p} \left\{ K_T \left(\frac{p}{H} \frac{\partial T}{\partial p} - \frac{g}{C_p} \right) \right\} = 2 + \left(\frac{K_m + K_T}{\rho} \right) \left(\frac{1}{r^2 \cos^2 \theta} \frac{\partial^2 T}{\partial \phi^2} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} - \frac{tan\theta}{r^2} \frac{\partial T}{\partial \theta} \right) = 3 + ug \frac{\partial}{\partial p} \left(\mu \frac{p}{H} \frac{\partial u}{\partial p} \right) + vg \frac{\partial}{\partial p} \left(\mu \frac{p}{H} \frac{\partial v}{\partial p} \right) + \frac{Q_{EUV} + Q_{NIR} + Q_{15\mu m}}{4}, \quad (11)$$

Molecular heat conduction coefficient

$$K_m = \sum_{i=1}^{3} \frac{K_i}{\left(\frac{1}{N_i}\right) \sum_{j=1}^{3} N_j \phi_{ij}},$$
(12)

- 1. Advectionvertical molecular heat conduction
- 2. Vertical molecular heat conduction and eddy heat transport
- 3. Horizontal molecular heat conduction and eddy heat transport
- 4. Work done by viscous force
- Solar EUV heating, solar NIR heating, and CO₂
 15 μm radiative cooling

Model description : Boundary conditions

Lower boundary

- Fixed temperature and 0 wind velocity
- [Case 1] Uniform geopotential height
- [Case 2] Geopotential height fluctuation
 → Wave effects
 Similar manner to Bougher et al. (1993)

Upper boundary

 No temperature and horizontal wind gradient

Results

- SS-AS circulation driven by day-night temperature difference due to EUV heating(100 km ~)
- Return flow below 90 km

Effects of atmospheric waves

□ Zonal wind average on the cordinates moving with the wave source

Wave	Vertical wavelength (km)	Period (days)	T_{max} (K)	u_{max} (m/s)
Diurnal tide	Standing wave	117	0.3 (at 85 km)	0.4 (at 87 km)
Semi-diurnal tide	Standing wave	117	1.0 (at 85 km)	0.6 (at 85 km)
Rossby wave	49	5	0.4 (at 95 km)	0.6 (at 105 km)
Kelvin wave	46	4	2.5 (at 95 km)	6.0 (at 105 km)

- Thermal tides do not propagate vertically
- Rossby wave propagates vertically but has small amplitude
- Kelvin wave propagates vertically and has large amplitudes (sometimes larger than 10 m/s)

Nightglow distribution

Observed muximum intensity of 1.2 MR • (Piccioni et al., 2009) is consistent with observation 2021/03/11

** : without waves, ** : with waves

- Approximately 4 day period fluctuation
- \rightarrow Period of Kelvin waves

Kelvin wave would be the most plausible cause for temporal variation in the nightglow intensity and distribution

Hoshino et al. (2013)

Model description

□ Same basic equations as Hoshino et al. (2012)

Gravity wave parametarization

 $\beta_m k_h S_m$

• MK scheme [Medvedev and Klaassen, 2000]

Momentum deposition by gravity wave with wave number m

Convective dumping rate Horizontal wave nuber Power-spectral density \rightarrow maximum when $c = \overline{u}$

Total momentum deposition
$$A = \int_0^\infty a_m dm.$$

□ Lower boundary condition

- 1) Fixed zonal wind speed [0 and 40 m/s] (superrotation is considered)
- \rightarrow Center of the gravity wave phase velocity
- 2) Power spectrum of gravity waves (vertical wave number)

Results : Wind distribution

□ Lower boundary 0 m/s

- Symmetric structure with maximum velocity around 240 m/s
- Strong deceleration around 125 km
 → wave drag becomes stronger above 125 km

□ Lower boundary 40 m/s

- Complex structure
 → superposition of RSZ and SS-AS wind
- RSZ wind driven by momentum deposition of gravity wave
 → gravity waves with fast phase velocity can reach high altitudes

Results : Nightglow distribution

□ Lower boundary 0 m/s

• Comparison with Hoshino et al. (2012)

RMS: $\sigma = \left(\sum_{i}^{M} < u_{i}^{2} > \right)^{1/2}$, Kelvin wave: 3 m/s Gravity wave: 8 m/s

Gravity wave would cause stronger temporal variation of the O₂ nightglow

□ Lower boundary 40 m/s

- Recent observation by VEX suggested no shift (Piccioni et al., 2009)
 - → gravity wave saturation should occur in higher altitudes
- Lower intensity because of less transport of O from the dayside

Summary of Hoshino et al. (2012, 2013)

□ Hoshino et al. (2012)

- Symmetric SS-AS circulation and the return flow below 90 km
- Thermal tides : small amplitude, weak vertical propagation Rossby waves : small amplitude, strong vertical propagation Kelvin waves : large amplitude, strong vertical propagation
- Kelvin wave would cause observed fluctuation of O₂ nightglow emission

□ Hoshino et al. (2013)

- The gravity waves have an important role in controlling RSZ wind
- The gravity waves would cause larger fluctuation than that of Kelvin wave
- Theoritical estimation ≠ actual RSZ wind ?

Test runs and applications

Test runs of Hoshino et al. (2012, 2013)

□ Hoshino et al., 2012

Applications

Coupling with a photochemical model

- Chemical reactions including SO₂, Cl, etc.
- Comparison with telescope observation

Coupling with a lower atmosphere VGCM

- Interaction with lower atmosphere
- Effects of radiative reactive cloud

Better understanding of general circulation and atmospheric chemistry

[Bierson and Zhang., 2020]