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𝑥! = 𝒙𝒃 + 𝐾(𝒚 − 𝑯(𝒙𝒃))

𝑯(𝑥!) : Model 
equivalent of the 

observations

Data assimilation (DA) is the 
combination of model and observations

DA gives the optimal estimate of the 
initial condition of the model. 

𝑥! : Model simulations

Y: Observations

we need an observation operator (satellite 
simulator) H, to take the difference 
between model variables and observations 

Data assimilation

𝑥# : analysis (optimal estimate)

K: weight matrix

𝑥! : Model simulations

radiance
e.g. pressure, 
temperature

e.g. radiance

e.g. pressure, temperature

compare
y: Observations

radiance
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Current observation operator (RTM: RTTOV)
< 𝑦 − ℎ 𝑥 > ≠ 0
Let ℎ$ 𝑥 = ℎ 𝑥 + 𝑏%&#' + 𝛽( + ∑)*+, 𝛽)𝑝)(𝑥)
< 𝑦 − ℎ$ 𝑥 > = 0

Use machine learning (ML) as the observation operator
< 𝒚 − ℎ-.(𝒙) > = 0

𝑯(𝑥!) : Model 
equivalent of the 

brightness temperature
H() : RTTOV and bias correction 

H(): Machine learning 
model

Review observation operator (satellite simulator)
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• Run a DA experiment
• using the model output and observations to 

train the machine learning model 

It usually takes time to build observation operator and 
start using the new data after launching the satellites. 

y: Observations

compare
y: Observations

(1) Training

(2) Testing, DA experiment

𝑥! : Model 
simulations

𝑥! : Model 
simulations

𝑥! : Model 
simulations

𝑯(𝑥!) : Model 
equivalent of the 

brightness temperature



1. In this research, physically-based observation operator (RTM) is used to train the machine learning model
2. We are currently considering other methods to train the ML model without using the RTM

Advantages: 
1. No explicit coding of the physically-based model and no separate bias correction procedure
2. Similar infrastructure can be used for other observations so we can use them quickly 

Disadvantages:
1. need a lot of data to train the ML model
2. need to re-train the ML model if the configuration of the numerical model is changed
3. need to update the ML model regularly using the most up-to-date data

Use machine learning as observation operator
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Non-hydrostatic icosahedral atmospheric model (NICAM)

Data assimilation system

• horizontal resolution: 250 km
• 78 vertical levels
• RTTOV is the observation operator for radiance data assimilation

Local ensemble transform Kalman filter (LETKF)
• Assimilate conventional observations and satellite radiance every 6 hours
• 64 members
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Brightness temperatures (BT) from the Advanced Microwave Sounding Unit (AMSU-A) on NOAA-15, NOAA-18, 
NOAA-19, METOP-2,and METOP-1 satellites. 2~3 channels were used. 

Radiance data

Radiometric characteristics of the AMUS-A
Channel Number Frequency (GHz) Polarization (at 

nadia)
Number of Bands Instrument 

Sensitivity NEDT 
(K) 

Primary function

6 54.4 Horizontal 1 0.25 Tropospheric 
temperature

7 54.94 Vertical 1 0.25 Tropospheric 
temperature

8 55.5 horizontal 1 0.25 Tropospheric 
temperature

AMSU-A radiances during a 6-h 
period before thinning
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Experiment

2015.01.01 ~ 
2015.01.31

2015.02.01 
~2015.02.28
(training)

2016.01.01 ~ 2016.01.31 2016.02.01 
~2016.02.28
(testing)

Data
assimilation

DA spin-up 
conv + 
radiance(RTTOV)

DA cycle
conv + 
radiance(RTTOV)

DA spin-up
conv + radiance(RTTOV)

Control

conv + 
radiance(RTTOV)

Machine 
learning

(1) generate the 
training data (80% 
train+ 20% 
validation) 

(2) Build the ML model

Test

conv + radiance(ML)
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Machine learning

NOAA15

location2location1 location3

Interpolate model variables at the model grids to observation locations

𝒚 = ℎ-. 𝒙𝒃 + 𝜀
< 𝜀 > = 0

NOAA16

select every 2 points
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location4



Machine learning

3D variables: 
pressure (78 levels)
temperature  (78 levels)                           
specific humidity (40 levels)

2D variables: 
surface pressure
surface temperature
10-meter u-wind and v-wind
2-meter temperature
2-m specific humidity
other bias predictor: Satellite zenith angle, Scan angle, latitude

Input: 𝒙𝒃

satellite brightness temperature
from channel 6, 7, 8

Output: y
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350205

Input 
layer

Hidden layers Output layer

𝒚 = ℎ-. 𝒙𝒃 + 𝜀
< 𝜀 > = 0

Hyperparameters:
activation function: ReLu
learning rate: 1e-04
l2 weight: 1.0e-6

The training data has around  3 
million rows for a 1-month period

205 features, includes 
different levels



Analyze bias

Bias is well handled by machine learning

Histogram of brightness temperature [K]

Number of 
observations

Average T from observation: 234.11 K 
Average T from ML:  234.12 K

NOAA-19
1 month data

Histogram of brightness temperature difference 
(ML obs – real obs )[K]
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RMSD spreadbias

Global average of temperature (K) at 500 hPa

Global average of zonal wind (m/s) at 500 hPa

Temperature, zonal wind compared to ERA

RMSD spreadbias

no radiance
RTTOV radiance
ML radiance

11/13



spread

bias

RMSD

Temperature, zonal wind compared to ERA

Global average of  zonal wind (m/s)1 month average Global average of temperature  [K]

no radiance
RTTOV radiance
ML radiance
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(1) ML can be used as the ‘observation operator’ 

(2) ML model treated the bias properly, and its performance was comparable to the control experiment

(3) We are currently considering other methods to train the ML model without using the RTM

(4) Implement ML as observation operator for Akatsuki data, and assimilate them into AFES-Venus model 

Summary
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